Printed Pages: 7

NEC402

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 131406

Roll No.

B.Tech.

(SEM. IV) THEORY EXAMINATION, 2014-15 ELECTRONIC CIRCUITS

Time: 3 Hours [Total Marks: 100

Note: (1) Attempt all questions.

(2) All questions carry equal marks.

- 1 Attempt any four parts of the following: $5\times4=20$
 - (a) Draw the circuit diagram of difference amplifier using OP-AMP and calculate the differential gain (A_d) and differential input resistance(R_{id}).
 - (b) For the circuit in Fig.(1) calculate the values of v_1 , i_1 , i_2 , v_0 , i_L and i_0 . Also calculate the voltage gain, current gain and power gain.

Fig.(1)

131406] 1 [Contd...

- (c) Explain how the performance of an OP-AMP is affected by the open loop gain of an amplifier.
- (d) Explain the effect of finite open loop gain and bandwidth on the circuit performance. And calculate the frequency response of closed loop inverting amplifier.
- (e) An inverting amplifier with nominal gain of -20V/V employs an op-amp having a dc gain of 10^4 and a unity gain frequency of 10^6Hz . What is the 3-dB frequency $f_{3\text{dB}}$ of the closed loop amplifier? What is the gain at $0.1\ f_{3\text{dB}}$ and at $10f_{3\text{dB}}$.
- (f) (i) Describe the terms Unity- gain Bandwidth and Full-power Bandwidth.
 - (ii) For an op-amp having a slew rate of 60 V/μs, what is the highest frequency at which a 20-V peak to peak sine wave can be produced at the output.
- Attempt any four parts of the following: $5\times4=20$)
 - (a) Derive the i_d - V_{ds} relationship for NMOS working in saturation region.

- (b) Explain the need of biasing. Also explain the merits and demerits of the various biasing techniques used in MOSFET.
- (c) Consider the FET amplifier of Fig.(2) for the case V_t =2V, kn'(W/L)=1mA/V², V_{GS} =4V, V_{DD} = 10V and R_D =3.6K Ω .

Fig.(2)

- (i) Find the dc quantities I_D and V_D .
- (ii) Calculate the value of gm at the bias point.
- (iii) Calculate the value of voltage gain.
- (iv) If the MOSFET has $\lambda = 0.001 V^{-1}$, find r_o at the bias point and calculate the voltage gain.

- (d) Calculate the MOSFET Unity –Gain Frequency (F_T) with the help of MOSFET high frequency model.
- (e) In the circuit of Fig.(3) let R_G =10M Ω , R_D =10K Ω , and V_{DD} =10 V. Find the value of V_D and V_G for V_t =1V and kn' (W/L)=0.5m A/V².

Fig. (3)

(f) Calculate the overall gain $G_V = V_o/V_{sig}$, input resistance and output resistance for a Common Source Amplifier.

- (a) Explain the working of BJT as an amplifier and as a switch with the help of neat diagram and necessary equations. Also calculate the amplifier gain.
- (b) Calculate the voltage gain for the circuit given in Fig.(4). Assume $\beta = 100$.

Fig.(4)

(c) Explain the effect of each capacitor of a CE amplifier with the gain frequency curve. Also discuss the low frequency response of a CE amplifier.

- (a) (i) What are the advantages of double ended differential amplifier over single ended differential amplifier.
 - (ii) Explain the operation of MOS differential pair with differential input voltage. Also calculate the range of input differential signals.
- (b) (i) Calculate the effect of gm mismatch on CMRR for MOS differential pair.
 - (ii) Calculate the input offset voltage of MOS differential pair when there is a mismatch in threshold voltage V_t.
- (c) Calculate the CMRR for the Bipolar Differential pair with Active Load.
- 5 Attempt any two parts of the following:- $10 \times 2 = 20$
 - (a) Explain the merits and demerits of negative feedback. Also explain in brief the various topologies used in negative feedback.

- (b) Derive the expression for the loop gain and frequency of oscillation for Collpit's oscillator.
- (c) Explain the Bark-Hausen criteria for sustained oscillations. Also explain the working of crystal oscillator.

7 [9925]