<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the Course</th>
<th>No. of Hours/ wk</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total</th>
<th>Tutorial</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP301T</td>
<td>Pharmaceutical Organic Chemistry II – Theory</td>
<td>3</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
<td>100</td>
</tr>
<tr>
<td>BP302T</td>
<td>Physical Pharmaceutics I – Theory</td>
<td>3</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
<td>100</td>
</tr>
<tr>
<td>BP303T</td>
<td>Pharmaceutical Microbiology – Theory</td>
<td>3</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
<td>100</td>
</tr>
<tr>
<td>BP304T</td>
<td>Pharmaceutical Engineering – Theory</td>
<td>3</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
<td>100</td>
</tr>
<tr>
<td>BP305P</td>
<td>Pharmaceutical Organic Chemistry II – Practical</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>4 Hrs</td>
<td>50</td>
</tr>
<tr>
<td>BP306P</td>
<td>Physical Pharmaceutics I – Practical</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>4 Hrs</td>
<td>50</td>
</tr>
<tr>
<td>BP307P</td>
<td>Pharmaceutical Microbiology – Practical</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>4 Hrs</td>
<td>50</td>
</tr>
<tr>
<td>BP 308P</td>
<td>Pharmaceutical Engineering – Practical</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>4 Hrs</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28</td>
<td>60</td>
<td>100</td>
<td>2</td>
<td>160</td>
<td>440</td>
</tr>
</tbody>
</table>
FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the Course</th>
<th>No. of Hours/ wk</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
<th>Tutorial</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
<td>Duration</td>
</tr>
<tr>
<td>BP401T</td>
<td>Pharmaceutical Organic Chemistry III – Theory</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP402T</td>
<td>Medicinal Chemistry I – Theory</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP403T</td>
<td>Physical Pharmaceutics II – Theory</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP404T</td>
<td>Pharmacology I – Theory</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP405T</td>
<td>Pharmacognosy I – Theory</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP406P</td>
<td>Medicinal Chemistry I – Practical</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>4 Hr</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP407P</td>
<td>Physical Pharmaceutics II – Practical</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP408P</td>
<td>Pharmacology I – Practical</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP409P</td>
<td>Pharmacognosy I – Practical</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>31</td>
<td>70</td>
<td>115</td>
<td>21 Hrs</td>
<td>185</td>
<td>515</td>
</tr>
</tbody>
</table>
SEMESTER III
BP301T. PHARMACEUTICAL ORGANIC CHEMISTRY –II (Theory)

45 Hours

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course the student shall be able to

1. Write the structure, name and the type of isomerism of the organic compound
2. Write the reaction, name the reaction and orientation of reactions
3. Account for reactivity/stability of compounds,
4. Prepare organic compounds.

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained.
To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

Unit I 10 Hours

- Benzene and its derivatives
 A. Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Hückel’s rule
 B. Reactions of benzene - nitration, sulphonation, halogenation- reactivity, Friedelcrafts alkylation-reactivity, limitations, Friedelcrafts acylation.
 C. Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction.
 D. Structure and uses of DDT, Saccharin, BHC and Chloramine.

Unit II 10 Hours

- Phenols* - Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols
- Aromatic Amines* - Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts
- Aromatic Acids* - Acidity, effect of substituents on acidity and important reactions of benzoic acid.

Unit III 10 Hours

- Fats and oils
 a. Fatty acids – reactions.
c. Analytical constants– Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value– significance and principle involved in their determination.

Unit IV 08 Hours
• Polynuclear hydrocarbons:
 a. Synthesis, reactions

Unit V 07 Hours
• Cycloalkanes*
 Stabilities – Baeyer’s strain theory, limitation of Baeyer’s strain theory, Coulson and Moffitt’s modification, Sachse Mohr’s theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only.
BP305P. PHARMACEUTICAL ORGANIC CHEMISTRY -II (Practical)

4 Hrs/week

I Experiments involving laboratory techniques
 • Recrystallization
 • Steam distillation

II Determination of following oil values (including standardization of reagents)
 • Acid value
 • Saponification value
 • Iodine value

III Preparation of compounds
 • Benznalide/Phenyl benzoate/Acetanilide from Aniline/ Phenol
 /Aniline by acylation reaction.
 • 2,4,6-Tribromo aniline/Para bromo acetanilide from Aniline/
 Acetanilide by halogenation (Bromination) reaction.
 • 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid /Nitro benzene by nitrination reaction.
 • Benzoic acid from Benzyl chloride by oxidation reaction.
 • Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by
 hydrolysis reaction.
 • 1-Phenyl azo-2-naphthol from Aniline by diazotization and coupling
 reactions.
 • Benzil from Benzoin by oxidation reaction.
 • Dibenzal acetone from Benzaldehyde by Claisen Schmidt reaction
 • Cinnamic acid from Benzaldehyde by Perkin reaction
 • P-Iodo benzoic acid from P-amino benzoic acid

Recommended Books (Latest Editions)

 Kindersley (India) Pvt. Ltd. (Pearson Education Ltd.), New Delhi
5. Vogel’s Text book of Practical Organic Chemistry
8. Reaction and Reaction Mechanism by Ahluwalia/Chatwal.
 London.
BP302T. PHYSICAL PHARMACEUTICS-I (Theory)

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to

1. Understand various physicochemical properties of drug molecules in the designing the dosage forms.
2. Know the principles of chemical kinetics & to use them for stability testing and determination of expiry date of formulations.
3. Demonstrate use of physicochemical properties in the formulation, development and evaluation of dosage forms.

Course Content:

Unit I

10 Hours

Unit II

Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications.

Unit III

08 Hours

Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions, surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilization, detergency, adsorption at solid interface.
Unit IV

Unit V
pH, buffers and Isotonic solutions: Sorensen’s pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.
BP306P. PHYSICAL PHARMACEUTICS – I (Practical)

4 Hrs/week

1. Determination the solubility of drug at room temperature.
2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
3. Determination of Partition co-efficient of benzoic acid in benzene and water.
4. Determination of Partition co-efficient of iodine in CCl₄ and water.
5. Determination of % composition of NaCl in a solution using phenol-water system by CST method.
6. Determination of surface tension of given liquids by drop count and drop weight method.
7. Determination of HLB number of a surfactant by saponification method.

Recommended Books: (Latest Editions)

1. Physical Pharmacy by Alfred Martin.
2. Experimental Pharmaceutics by Eugene, Parott.
3. Tutorial Pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, MarcelDekkar Inc.
7. Physical Pharmaceutics by Ramasamy C and ManavalanR.
3. Essentials of Physical Pharmacy- by D.V. Derle.
BP 303 T. PHARMACEUTICAL MICROBIOLOGY (Theory)

45 Hours

Scope:
Study of all categories of microorganisms especially for the production of alcohol antibiotics, vaccines, vitamins enzymes etc.

Objectives: Upon completion of the subject student shall be able to;
1. Understand methods of identification, cultivation and preservation of various microorganisms
2. To understand the importance and implementation of sterilization in pharmaceutical processing and industry
3. Learn sterility testing of pharmaceutical products.
4. Carried out microbiological standardization of Pharmaceuticals.
5. Understand the cell culture technology and its applications in pharmaceutical industries.

Course content:

Unit I 10 Hours
Introduction, history of microbiology, its branches, scope and its importance.
Introduction to Prokaryotes and Eukaryotes
Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count).
Study of different types of phase contrast microscopy, dark field microscopy and electron microscopy.

Unit II 10 Hours
Identification of bacteria using staining techniques (simple, Gram’s & Acid fast staining) and biochemical tests (IMViC).
Study of principle, procedure, merits, demerits and applications of physical, chemical gaseous, radiation and mechanical method of sterilization.
Evaluation of the efficiency of sterilization methods.
Equipments employed in large scale sterilization. Sterility indicators.
Unit III 10 Hours
Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses.
Classification and mode of action of disinfectants
Factors influencing disinfection, antiseptics and their evaluation.
For bacteriostatic and bactericidal actions.
Evaluation of bactericidal & Bacteriostatic.
Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

Unit IV 08 Hours
Assessment of a new antibiotic.

Unit V 07 Hours
Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.
Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations.
Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures.
Application of cell cultures in pharmaceutical industry and research.
1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.

2. Sterilization of glassware, preparation and sterilization of media.

4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical).

5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.

6. Microbiological assay of antibiotics by cup plate method and other methods

7. Motility determination by Hanging drop method.

8. Sterility testing of pharmaceuticals.

9. Bacteriological analysis of water

Recommended Books (Latest edition)

5. Rose: Industrial Microbiology.

7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.

8. Peppler: Microbial Technology.

10. Ananthnarayan : Text Book of Microbiology, Orient-Longman, Chennai

12. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi

BP 304 T. PHARMACEUTICAL ENGINEERING (Theory)

45 Hours

Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course student shall be able:
1. To know various unit operations used in Pharmaceutical industries.
2. To understand the material handling techniques.
3. To perform various processes involved in pharmaceutical manufacturing process.
4. To carry out various test to prevent environmental pollution.
5. To appreciate and comprehend significance of plant lay out design for optimum use of resources.
6. To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries.

Course content:

Unit I

- **Flow of fluids:** Types of manometers, Reynolds number and its significance, Bernoulli’s theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer.
- **Size Reduction:** Objectives, Mechanisms & Laws governing size reduction, factors affecting size reduction, principles, construction, working, uses, merits and demerits of Hammer mill, ball mill, fluid energy mill, Edge runner mill & end runner mill.
- **Size Separation:** Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation Principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter & elutriation tank.

Unit II

- **Evaporation**: Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process. principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator & Economy of multiple effect evaporator.

- **Distillation**: Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation.

Unit III

- **Drying**: Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.

Unit IV

- **Centrifugation**: Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

Unit V

- **Materials of pharmaceutical plant construction, Corrosion and its prevention**: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems.
Recommended Books: (Latest Editions)

I. Determination of radiation constant of brass, iron, unpainted and painted glass.
II. Steam distillation – To calculate the efficiency of steam distillation.
III. To determine the overall heat transfer coefficient by heat exchanger.
IV. Construction of drying curves (for calcium carbonate and starch).
V. Determination of moisture content and loss on drying.
VI. Determination of humidity of air – i) From wet and dry bulb temperatures – use of Dew point method.
VII. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, dehumidifier.
VIII. Size analysis by sieving – To evaluate size distribution of tablet granulations – Construction of various size frequency curves including arithmetic and logarithmic probability plots.
IX. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger’s, Bond’s coefficients, power requirement and critical speed of Ball Mill.
X. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such other major equipment.
XI. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity
XII. To study the effect of time on the Rate of Crystallization.
XIII. To calculate the uniformity Index for given sample by using Double Cone Blender.
SEMESTER IV
BP401T. PHARMACEUTICAL ORGANIC CHEMISTRY –III (Theory)

45 Hours

Scope: This subject imparts knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important hetero cyclic compounds. It also emphasizes on medicinal and other uses of organic compounds.

Objectives: At the end of the course, the student shall be able to

1. Understand the methods of preparation and properties of organic compounds.
2. Explain the stereo chemical aspects of organic compounds and stereo chemical reactions.
3. Know the medicinal uses and other applications of organic compounds.

Course Content:

Note: To emphasize on definition, types, mechanisms, examples, uses/applications

Unit I 10 Hours
Stereo isomerism
Optical isomerism– Optical activity, enantiomerism, diastereoisomerism, meso compounds.
Elements of symmetry, chiral and achiral molecules.
DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers.
Reactions of chiral molecules.
Racemic modification and resolution of racemic mixture.
Asymmetric synthesis: partial and absolute.

Unit II 10 Hours
Geometrical isomerism- Nomenclature of geometrical isomers (Cis-Trans, E-Z, Syn-Anti systems). Methods of determination of configuration of geometrical isomers.
Conformational isomerism in Ethane, n-Butane and Cyclohexane.
Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity.
Stereospecific and stereoselective reactions

Unit III 10 Hours
Heterocyclic compounds:
Nomenclature and classification
Synthesis, reactions and medicinal uses of following compounds/derivatives
Pyrrole, Furan, and Thiophene
Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene.
Unit IV
8 Hours
Synthesis, reactions and medicinal uses of following compounds/derivatives.
Pyrazole, Imidazole, Oxazole and Thiazole.
Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of Pyridine.
Synthesis and medicinal uses of Pyrimidine, Purine, Azepines and their derivatives.

Unit V
07 Hours
Reactions of synthetic importance
Metal hydride reduction (NaBH₄ and LiAlH₄), Clemmensen reduction, Birch reduction, Wolff Kishner reduction.
Oppenauer-oxidation and Dakin reaction.
Beckmanns rearrangement and Schmidt rearrangement.
Claisen-Schmidt condensation.

Recommended Books (Latest Editions)
BP402T. MEDICINAL CHEMISTRY – I (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to
1. Understand the chemistry of drugs with respect to their pharmacological activity
2. Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
3. Know the Structural Activity Relationship (SAR) of different class of drugs
4. Write the chemical synthesis of some drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

Unit I 10 Hours
Introduction to Medicinal Chemistry
History and development of medicinal chemistry
Physicochemical properties in relation to biological action
Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism.
Drug metabolism
Drug metabolism principles- Phase I and Phase II.
Factors affecting drug metabolism including stereo chemical aspects.

Unit II 10 Hours
Drugs acting on Autonomic Nervous System
Adrenergic Neurotransmitters:
Biosynthesis and catabolism of catecholamine.
Adrenergic receptors (Alpha & Beta) and their distribution.
Sympathomimetic agents: SAR of sympathomimetic agents
• Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine,
Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline,
Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline.

- Indirect acting agents: Hydroxyamphetamine, Pseudoephedrine,
 Propylhexedrine.
- Agents with mixed mechanism: Ephedrine, Metaraminol.

Adrenergic Antagonists:

Alpha adrenergic blockers: Tolazoline*, Phentolamine, Phenoxybenzamine,
Prazosin, Dihydroergotamine, Methysergide.

Beta adrenergic blockers: SAR of beta blockers, Propranolol*, Metibranolol,
Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol, Labetolol, Carvedilol.

Unit III

Cholinergic neurotransmitters:
Biosynthesis and catabolism of acetylcholine.
Cholinergic receptors (Muscarinic & Nicotinic) and their distribution.

Parasympathomimetic agents: SAR of Parasympathomimetic agents

- **Direct acting agents:** Acetylcholine, Carbachol*, Bethanechol, Methacholine,
Pilocarpine.
- **Indirect acting/ Cholinesterase inhibitors (Reversible & Irreversible):**
 Physostigmine, Neostigmine*, Pyridostigmine, Edrophonium chloride,
 Tacrine hydrochlordide, Ambenonium chloride, Isofluorphpate, Echothiophate iodide,
 Parathione, Malathion.
- **Cholinesterase reactivator:** Pralidoxime chloride.

Cholinergic Blocking agents: SAR of cholinolytic agents

- **Solanaceous alkaloids and analogues:** Atropine sulphate, Hyoscyamine sulphate,
 Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide*.
- **Synthetic cholinergic blocking agents:** Tropicamide, Cyclopentolate hydrochloride,
 Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline
 bromide, Propantheline bromide, Benztrapine mesylate, Orphenadrine citrate,
 Biperidine hydrochloride, Procyclidine hydrochloride*, Tridihexyl chloride, Isopropamide iodide,
 Ethopropazine hydrochloride.

Unit IV

Drugs acting on Central Nervous System

A. Sedatives and Hypnotics:

- **Benzodiazepines:** SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam,
 Chlorazapate, Lorazepam, Alprazolam, Zolpidem
- **Barbiturtes:** SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital,
 Butabarbital, Pentobarbital, Secobarbital.
Miscellaneous: Amides & imides: Gluthimide.
Alcohol & their carbamate derivatives: Meprobamate, Ethchlorvynol.
Aldehyde & their derivatives: Triclofos sodium, Paraldehyde.

B. Antipsychotics

Phenothiazine: SAR of Phenothiazine- Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thoridazine hydrochloride, Pipercetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride.

Ring Analogues of Phenothiazine: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine.

Flurobuterphenones: Haloperidol, Droperidol, Risperidone.

Beta amino ketones: Molindone hydrochloride.

Benzamides: Sulpieride.

C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant action.

Barbiturates: Phenobarbitone, Methabarbital.

Hydantoins: Phenytoin*, Mephenytoin, Ethotoin.

Oxazolidine diones: Trimethadione, Paramethadione.

Succinimides: Phensuximide, Methsuximide, Ethosuximide*

Urea and monoacylureas: Phenacemide, Carbamazepine*

Benzodiazepines: Clonazepam.

Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate

Unit V

07 Hours

Drugs acting on Central Nervous System

General anesthetics:

Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.

Ultra short acting barbiturates: Methohexital sodium*, Thiamylal sodium, Thiopental sodium.

Dissociative anesthetics: Ketamine hydrochloride,*

Narcotic and non-narcotic analgesics

Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine, Meperidine hydrochloride, Anileridine hydrochloride, Diphenoxylate hydrochloride, Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Propoxyphene hydrochloride, Pentazocine, Levorphanol tartarate.

Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartarate, Naloxone hydrochloride.

BP406P. MEDICINAL CHEMISTRY – I (Practical)

I Preparation of drugs/ intermediates
1 1,3-pyrazole
2 1,3-oxazole
3 Benzimidazole
4 Benztriazole
5 2,3- diphenyl quinoxaline
6 Benzocaine
7 Phenytoin
8 Phenothiazine
9 Barbiturate

II Assay of drugs
1 Chlorpromazine
2 Phenobarbitone
3 Atropine
4 Ibuprofen
5 Aspirin
6 Furosemide

III Determination of Partition coefficient for any two drugs

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry by Lemke T.L., Williams D.A., Roche V.F. and Zito S.W., Lippincott Williams and Wilkins.
13. Indian Pharmacopoeia.
BP 403 T. PHYSICAL PHARMACEUTICS-II (Theory)

45 Hours

Scope: The course deals with the various physical and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to
1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations
3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

Unit I

07 Hours

Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles, classification of colloids & comparative account of their general properties. Optical, kinetic & electrical properties. Effect of electrolytes, coacervation, peptization & protective action.

Unit II

10 Hours

Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational visometers

Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus

Unit III

10 Hours

Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method.

Unit IV

10 Hours

Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties.
Unit V

Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic rate constants, determination of reaction order. Physical and chemical factors influencing the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength, dielectric constant, specific & general acid base catalysis, Simple numerical problems. Stabilization of medicinal agents against common reactions like hydrolysis & oxidation. Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention
BP 407P. PHYSICAL PHARMACEUTICS- II (Practical)

3 Hrs/week

1. Determination of particle size, particle size distribution using sieving method
2. Determination of particle size, particle size distribution using Microscopic method
3. Determination of bulk density, true density and porosity
4. Determine the angle of repose and influence of lubricant on angle of repose
5. Determination of viscosity of liquid using Ostwald’s viscometer
6. Determination sedimentation volume with effect of different suspending agent
7. Determination sedimentation volume with effect of different concentration of single suspending agent
8. Determination of viscosity of semisolid by using Brookfield viscometer
9. Determination of reaction rate constant first order.
10. Determination of reaction rate constant second order
11. Accelerated stability studies

Recommended Books: (Latest Editions)

2. Experimental pharmaceutics by Eugene, Parott.
3. Tutorial pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.
BP 404 T. PHARMACOLOGY-I (Theory)

45 Hrs

Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs.

Objectives: Upon completion of this course the student should be able to

1. Understand the pharmacological actions of different categories of drugs
2. Explain the mechanism of drug action at organ system/sub cellular/macromolecular levels.
3. Apply the basic pharmacological knowledge in the prevention and treatment of various diseases.
4. Observe the effect of drugs on animals by simulated experiments
5. Appreciate correlation of pharmacology with other bio medical sciences

Course Content:

Unit I

1. General Pharmacology
 a. Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists (competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy.
 b. Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs. Enzyme induction, enzyme inhibition, kinetics of elimination

Unit II

General Pharmacology

a. Pharmacodynamics- Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors, drug receptors interactions signal transduction mechanisms, G-protein–coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding receptor and receptors that regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action.

b. Adverse drug reactions.

c. Drug interactions (pharmacokinetic and pharmacodynamic)

d. Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance.
Unit III
2. Pharmacology of drugs acting on peripheral nervous system
 a. Organization and function of ANS.
 b. Neurohumoral transmission, co-transmission and classification of neurotransmitters.
 c. Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics.
 d. Neuromuscular blocking agents and skeletal muscle relaxants (peripheral).
 e. Local anesthetic agents.
 f. Drugs used in myasthenia gravis and glaucoma

Unit IV
3. Pharmacology of drugs acting on central nervous system
 a. Neurohumoral transmission in the C.N.S. special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine.
 b. General anesthetics and pre-anesthetics.
 c. Sedatives, hypnotics and centrally acting muscle relaxants.
 d. Anti-epileptics.
 e. Alcohols and disulfiram.

Unit V
3. Pharmacology of drugs acting on central nervous system
 b. Drugs used in Parkinson's disease and Alzheimer’s disease.
 c. CNS stimulants and nootropics.
 d. Opioid analgesics and antagonists
 e. Drug addiction, drug abuse, tolerance and dependence.
BP 408 P. PHARMACOLOGY-I (Practical)

1. Introduction to experimental pharmacology.
2. Commonly used instruments in experimental pharmacology.
3. Study of common laboratory animals.
4. Maintenance of laboratory animals as per CPCSEA guidelines.
6. Study of different routes of drugs administration in mice/rats.
7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice.
8. Effect of drugs on ciliary motility of frog oesophagus
9. Effect of drugs on rabbit eye.
10. Effects of skeletal muscle relaxants using rota-rod apparatus.
11. Effect of drugs on locomotor activity using actophotometer.
12. Anticonvulsant effect of drugs by MES and PTZ method.
13. Study of stereotype and anti-catatonic activity of drugs on rats/mice.
15. Study of local anesthetics by different methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
BP 405 T. PHARMACOGNOSY AND PHYTOCHEMISTRY I (Theory)
45 Hours

Scope: The subject involves the fundamentals of Pharmacognosy like scope, classification of crude drugs, their identification and evaluation, phytochemicals present in them and their medicinal properties.

Objectives: Upon completion of the course, the student shall be able
1. To know the techniques in the cultivation and production of crude drugs.
2. To know the crude drugs, their uses and chemical nature.
3. Know the evaluation techniques for the herbal drugs.
4. To carry out the microscopic and morphological evaluation of crude drugs.

Course Content:

Unit I 10 Hours
Introduction to Pharmacognosy:
(a) Definition, history, scope and development of Pharmacognosy
(b) Sources of Drugs – Plants, Animals, Marine & Tissue culture
(c) Organized drugs, unorganized drugs (dried latex, dried juices, dried extracts, gums and mucilages, oleoresins and oleo-gum-resins).

Classification of drugs:
Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and sero taxonomical classification of drugs

Quality control of Drugs of Natural Origin:
Adulteration of drugs of natural origin. Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties. Quantitative microscopy of crude drugs including lycopodium spore method, leafconstants, camera lucida and diagrams of microscopic objects to scale with camera lucida.

Unit II 10 Hours

Conservation of medicinal plants.

Unit III 07 Hours
Plant tissue culture:
Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance. Applications of plant tissue culture in pharmacognosy. Edible vaccines.
Unit IV
Pharmacognosy in various systems of medicine:
Role of Pharmacognosy in allopathy and traditional systems of medicine namely, Ayurveda, Unani, Siddha, Homeopathy and Chinese systems of medicine.

Introduction to secondary metabolites:
Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins.

Unit V
08 Hours
Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs.

Plant Products:
Fibers - Cotton, Jute, Hemp.
Hallucinogens, Teratogens, Natural allergens.

Primary metabolites:
General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites:

Carbohydrates: Acacia, Agar, Tragacanth, Honey.

Proteins and Enzymes: Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopeptidase, urokinase, streptokinase, pepsin).

Lipids (Waxes, fats, fixed oils): Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax.

Marine Drugs: Novel medicinal agents from marine sources
BP408 P. PHARMACOGNOSY AND PHYTOCHEMISTRY I (Practical)

4 Hours/Week

1. Analysis of crude drugs by chemical tests:
 (i) Tragaccanth
 (ii) Acacia
 (iii) Agar
 (iv) Gelatin
 (v) starch
 (vi) Honey
 (vii) Castor oil.
2. Determination of stomatal number and index.
3. Determination of vein islet number, vein islet termination and palisade ratio.
4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer.
5. Determination of Fiber length and width.
6. Determination of number of starch grains by Lycopodium spore method.
7. Determination of Ash value.
8. Determination of Extractive values of crude drugs.
9. Determination of moisture content of crude drugs.
10. Determination of swelling index and foaming.

Recommended Books: (Latest
Editions)

1. W. C. Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co.,
2. Tyler, V.E., Brady, L.R. and Robbers, J.E., Pharmacognosy, 9th Edn., Lea and
3. Text Book of Pharmacognosy by T.E. Wallis
 Publishers & Distribution, New Delhi.
6. Herbal drug industry by R.D. Choudhary (1996), 1st Edn, Eastern Publisher, New
 Delhi.
7. Essentials of Pharmacognosy, Dr.SH.Ansari, Ilnd edition, Birla publications, New
 Delhi, 2007.
8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae.