EVALUATION SCHEME & SYLLABUS
FOR
B. TECH. IV YEAR
ELECTRICAL ENGINEERING
ON
CHOICE BASED CREDIT SYSTEM (CBCS)
[Effective from the Session: 2019-20]
EVALUATION SCHEME

B-TECH. ELECTRICAL ENGINEERING

YEAR 4th / SEMESTER-VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Department</th>
<th>L-T-P</th>
<th>Th./Lab Marks</th>
<th>Sessional</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESE CT TA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>OPEN ELECTIVE COURSE-1</td>
<td>Other Deptt.</td>
<td>3--0--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>DEPTT ELECTIVE COURSE-3</td>
<td>Core Deptt.</td>
<td>3--0--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>DEPTT ELECTIVE COURSE-4</td>
<td>Core Deptt.</td>
<td>3--1--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>REE701</td>
<td>ELECTRICAL DRIVES</td>
<td>Core Deptt.</td>
<td>3--1--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>REE702</td>
<td>POWER SYSTEM PROTECTION</td>
<td>Core Deptt.</td>
<td>3--0--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>REE751</td>
<td>INDUSTRIAL AUTOMATION & PLC LAB</td>
<td>Core Deptt.</td>
<td>0--0--2</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>REE752</td>
<td>POWER SYSTEM LAB</td>
<td>Core Deptt.</td>
<td>0--0--2</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>REE753</td>
<td>INDUSTRIAL TRAINING</td>
<td>Core Deptt.</td>
<td>0--0--3</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>REE754</td>
<td>PROJECT-1</td>
<td>Core Deptt.</td>
<td>0--0--6</td>
<td>200</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>450 100 450</td>
<td>1000</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEPTT. ELECTIVE COURSE-3

1. REE070: Microprocessors and Microcontrollers
2. REE071: Utilization of Electrical Energy & Electric Traction
3. REE072: Introduction to Smart Grid
4. REE073: Power System Optimization

DEPTT. ELECTIVE COURSE-4

1. REE075: Industrial Automation and Control
2. REE076: Energy Efficiency & Conservation
3. REE077: Reliability Engineering
4. REE078: Electric Machine Design
EVALUATION SCHEME

B-TECH. ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Department</th>
<th>L-T-P</th>
<th>Th/Lab Marks</th>
<th>Sessional</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>OPEN ELECTIVE COURSE-2</td>
<td>Other Deptt.</td>
<td>3--0--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>DEPTT ELECTIVE COURSE-5</td>
<td>Core Deptt.</td>
<td>3--1--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>DEPTT ELECTIVE COURSE-6</td>
<td>Core Deptt.</td>
<td>3--0--0</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>REE851</td>
<td>GD & SEMINAR</td>
<td>Core Deptt.</td>
<td>0--0--3</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>REE852</td>
<td>PROJECT-2</td>
<td>Core Deptt.</td>
<td>0--0--12</td>
<td>350</td>
<td>250</td>
<td>600</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>560</td>
<td>60</td>
<td>380</td>
<td>1000</td>
</tr>
</tbody>
</table>

DEPTT. ELECTIVE COURSE-5
1. REE080: Advanced Control System
2. REE081: Introduction to Power Quality & FACTS
3. REE082: Power System Dynamics, Control and Monitoring (NPTEL)
4. REE083: Computer Aided Power System Analysis

DEPTT. ELECTIVE COURSE-6
1. REE085: EHVAC & DC Transmission
2. REE086: Power Theft & Energy Management
3. REE087: Digital Image Processing
4. REE088: Antennas (NPTEL)
UNIT-I: Fundamentals of Electric Drive:

Electric Drives and its parts, advantages of electric drives, Classification of electric drives, Speed-torque conventions and multi-quadrant operations, Constant torque and constant power operation, Types of load, Load torque: components, nature and classification.

UNIT-II

Dynamics of Electric Drive:

Dynamics of motor-load combination, Steady state stability of Electric Drive, Transient stability of electric Drive

Selection of Motor Power rating:

Thermal model of motor for heating and cooling, classes of motor duty, determination of motor power rating for continuous duty, short time duty and intermittent duty., Load equalization

UNIT-III

Electric Braking:

Purpose and types of electric braking, braking of de, three phase induction and synchronous motors

Dynamics During Starting and Braking: Calculation of acceleration time and energy loss during starting of dc shunt and three phase induction motors, methods of reducing energy loss during starting. Energy relations during braking, dynamics during braking.

UNIT-IV

Power Electronic Control of DC Drives:

Single phase and three phase-controlled converter fed separately excited dc motor drives (continuous conduction only), dual converter fed separately excited dc motor drive, rectifier control of de series motor. Supply harmonics, power factor and ripples in motor current Chopper control of separately excited dc motor and dc series motor.

UNIT-V

Power Electronic Control of AC Drives:

Three Phase induction Motor Drive: Static Voltage control scheme, static frequency control scheme (VSI, CSI, and cyclo – converter based) static rotor resistance and slip power recovery control schemes.

Three Phase Synchronous motor: Self-controlled scheme

Special Drives: Switched Reluctance motor, Brushless dc motor. Selection of motor for particular applications

Text Books:

Reference Books:

Unit I: Introduction to Protection System:
Introduction to protection system and its elements, functions of protective relaying, protective zones, primary and backup protection, desirable qualities of protective relaying, basic terminology.

Relays: Electromagnetic, attracted and induction type relays, thermal relay, gas actuated relay, design considerations of electromagnetic relay.

Unit-II: Relay Application and Characteristics:
Amplitude and phase comparators, over current relays, directional relays, distance relays, differential relay

Static Relays: Comparison with electromagnetic relay, classification and their description, over current relays, directional relay, distance relays, differential relay.

Unit-III: Protection of Transmission Line:
Over current protection, distance protection, pilot wire protection, carrier current protection, protection of bus, auto re-closing.

Unit-IV: Circuit Breaking:
Properties of arc, arc extinction theories, re-striking voltage transient, current chopping, resistance switching, capacitive current interruption, short line interruption, circuit breaker ratings.

Testing of Circuit Breaker: Classification, testing station and equipment, testing procedure, direct and indirect testing.

Unit-V: Apparatus Protection:
Protection of Transformer, generator and motor.

Circuit Breaker: Operating modes, selection of circuit breakers, constructional features and operation of Bulk Oil, Minimum Oil, Air Blast, SF6, Vacuum and d. c. circuit breakers.

Text Books:
2. B. Ravindranath and M. Chander, Power system Protection and Switchgear, Wiley Eastern Ltd.
Reference Books:
5. T.S.M Rao, “Power System Protection: Static Relays with Microprocessor Applications” Tata Mcgraw Hill”.
Note: - Experiments shall be performed on following virtual lab links:

For Industrial Automation (minimum 5 experiments):
 - http://ial-coep.vlabs.ac.in/List%20of%20experiments.html?domain=Electrical%20Engineering

For PLC (minimum 5 experiments):
 - http://plc-coep.vlabs.ac.in/List%20of%20experiments.html?domain=Electrical%20Engineering
Note: At least 10 experiments should be performed out of which 3 should be simulation based.

(A) Hardware Based:
1. To determine direct axis reactance (\(x_d\)) and quadrature axis reactance (\(x_q\)) of a salient pole alternator.
2. To determine negative and zero sequence reactances of an alternator.
3. To determine sub transient direct axis reactance (\(x_d\)) and sub transient quadrature axis reactance (\(x_q\)) of an alternator
4. To determine fault current for L-G, L-L, L-L-G and L-L-L faults at the terminals of an alternator at very low excitation
5. To study the IDMT over current relay and determine the time current characteristics
6. To study percentage differential relay
7. To study Impedance, MHO and Reactance type distance relays
8. To determine location of fault in a cable using cable fault locator
9. To study ferranti effect and voltage distribution in H.V. long transmission line using transmission line model.
10. To study operation of oil testing set.

(B) Simulation Based Experiments (using MATLAB or any other software)
11. To determine transmission line performance.
12. To obtain steady state, transient and sub-transient short circuit currents in an alternator
13. To obtain formation of Y-bus and perform load flow analysis
14. To perform symmetrical fault analysis in a power system
15. To perform unsymmetrical fault analysis in a power system

Text Books:
DEPARTMENTAL ELECTIVE-3

| REE070 | MICROPROCESSORS AND MICROCONTROLLERS | L T P: 3 0 0 | 3 Credit |

Unit-I: Mode of operation of higher order processors: Real mode and protected mode Real mode and protected mode memory addressing, access right byte, Memory paging, System descriptors, Multi Tasking & TSS.

Unit-II: Instruction Set of higher order processors (8086 to Pentium): Comparison with 8086 in real mode: Generalized instruction set format Addressing Mode: DRAM & BRAM Categorization of instruction set of INTEL processors. Integer instructions: Data transfer instructions, arithmetic and logical operations, string instructions, branch control instructions, procedure call instruction and return instruction.

Unit-III: Processing of CALLS, INTERRUPTS & EXCEPTIONS: Privilege levels; ENTER and LEAVE Instructions, INT N. IRET. Interrupt processing sequence, Protected mode interrupts.

Unit-IV: Assembly Level Programming: ROM BIOS Routines, MS DOS BIOS Routines, Assembling a program using Assembler, exe and. com programs. Mixed Language Programming: using Assembly with C/C++

Unit-V: Microcontrollers: Introduction, basic functions, applications of 8-bit and 16-bit microcontrollers.

8-bit microcontrollers INTEL 8051: Internal Architecture, signals, memory organization and interfacing, Timing and control, port operations, interrupts and I/O addressing. Instruction Set and programming.

Text Books:

Reference Books:

3. Rajkamal, “The concept and feature of microcontrollers 68HC11, 8051 and 8096”, S.Chand Publisher, New Delhi
Unit-I: Electric Heating:
Advantages and methods of electric heating, Resistance heating, Electric arc heating, Induction heating, Dielectric heating

Unit-II: Electric Welding:

Unit-III: Illumination:
Various definitions, Laws of illumination, requirements of good lighting Design of indoor lighting and outdoor lighting systems Refrigeration and Air Conditioning: Refrigeration systems, domestic refrigerator, water cooler Types of air conditioning, Window air conditioner

Unit-IV: Electric Traction - I
Types of electric traction, systems of track electrification Traction mechanics- types of services, speed time curve and its simplification, average and schedule speeds Tractive effort, specific energy consumption, mechanics of train movement, coefficient of adhesion and its influence

Unit-V: Electric Traction – II
Salient features of traction drives Series – parallel control of dc traction drives (bridge transition) and energy saving Power Electronic control of dc and ac traction drives Diesel electric traction.

Text Books:

Reference Books:
Unit-I: Introduction:

Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. CDM opportunities in Smart Grid.

Unit-II: Smart Grid Technologies:

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading (AMR), Outage Management System (OMS), Plug in Hybrid Electric Vehicles (PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation.

Unit-III: Smart Grid Technologies:

Smart Substations, Substation Automation, Feeder Automation, Geographic Information System (GIS), Intelligent Electronic Devices (IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU), PMUs application to monitoring & control of power system.

Unit-IV: Microgrids and Distributed Energy Resources:

Concept of microgrid, need & application of microgrid, formation of microgrid, Issues of interconnection, protection & control of microgrid, Plastic & Organic solar cells, thin film solar cells, Variable speed wind generators, fuel cells, microturbines, Captive power plants, Integration of renewable energy sources.

Unit V: Power Quality Management in Smart Grid:

Text Books:

Reference Books:

Unit –I Introduction to optimization and classical optimization techniques Linear Programming:
Standard form, geometry of LPP, Simplex Method of solving LPP, revised simplex method, duality, decomposition principle, and transportation problem.

Unit –II Non-Linear Problem (NLP):
One dimensional method, Elimination methods, Interpolation methods, Unconstrained optimization techniques-Direct search and Descent methods, constrained optimization techniques, direct and indirect methods.

Unit –III Dynamic Programming:
Multistage decision processes, concept of sub-optimization and principle of optimality, conversion of final value problem into an initial value problem CPM and PERT

Unit –IV Genetic Algorithm:
Introduction to genetic Algorithm, working principle, coding of variables, fitness function. GA operators; Similarties and difference between Gas and traditional methods; Unconstrained and constrained optimization using Genetic Algorithm, real coded gas, Advanced Gas, global optimization using GA.

Unit –V Applications to Power system:
Economic Load Dispatch in thermal and Hydro-thermal system using GA and classical optimization techniques, Unit commitment problem, reactive power optimization. Optimal power flow, LPP and NLP techniques to optimal flow problems.

Text / Reference Books
Unit 1: Need and benefit of automation, PLC system: applications of PLC, PLC modules, I/O module, Communication module, PID module, Input analog and digital devices, Output analog and digital devices.

Unit 2: PLC registers, PLC timer function, PLC counter function, PLC simple arithmetic and logical functions, PLC ladder logic diagram, Advanced PLC functions like SKIP, MASTER CONTROL RELAY, JUMP with non return, jump with return, Sequencer function

Unit 3: PLC applications: Bottling filling plant, Material handling elevator, 2-axis robot with sequencer control, Level control, Troubleshooting

Unit 4: Introduction to DCS, concept of DCS, hierarchy of DCS, function of each level of DCS, Introduction to supervisory Control and Data Acquisition system (SCADA), SCADA Architecture, Interfacing SCADA with PLC

Unit 5: Induction motor drive: V/F Control, Direct torque control, Stepper motor drives, AC and DC Servo motor drives, DC motor drives

Text Books:

1. Webb John W. and Reis A. Ronald, “Programmable Logic Controllers Principles and applications” PHI ,New Delhi, Latest edition
2. Bolton W, “Programmable Logic Controllers” Elsevier India Pvt. Ltd. New Delhi

Reference Books:

4. Rashid M. H, “Power Electronics – Circuits, Devices and Applications” PHI / Pearson Education.
Unit-I: Energy conservation:

Unit-III: Demand Side Management:

Concept and Scope of Demand Side Management, Evolution of Demand Side Management, DSM Strategy, Planning, Implementation and its application, Customer Acceptance & its implementation issues, National and International Experiences with DSM.

Unit-IV: Voltage and Reactive power in Distribution Systems:

Voltage and reactive power calculations and control, Voltage classes and nomenclature, voltage drop calculations, Voltage control, VAR requirements and power factor, Capacitors unit and bank rating, Protection of capacitors and switching, Controls for switched capacitors and fields testing.

Unit-V: Efficiency in Motors and Lighting system:

Load scheduling/shifting, Motor Drives-motor efficiency testing, energy efficient motors, and motor speed control. Lighting- lighting levels, efficient options, fixtures, day lighting, timers, Energy efficient windows, UPS selection, Installation operation and maintenance.

Text / Reference Books

2. Industrial Energy Conservation Manuals, MIT Press, Mass
UNIT I: Introduction

Definition of reliability, types of failures, definition and factors influencing system effectiveness, various parameters of system effectiveness.

UNIT II: Reliability Mathematics

Definition of probability, laws of probability, conditional probability, Bay's theorem; various distributions; data collection, recovery of data, data analysis procedures, empirical reliability calculations.

UNIT III: Reliability

Types of system - series, parallel, series-parallel, stand by and complex; development of logic diagram, methods of reliability evaluation; cut set and tie-set methods, matrix methods, event trees and fault trees methods, reliability evaluation using probability distributions, Markov method, frequency and duration method.

UNIT IV: Reliability Improvements

Methods of reliability improvement, component redundancy, system redundancy, types of redundancies - series, parallel, series-parallel, stand by and hybrid, effect of maintenance.

UNIT V: Reliability Testing

Life testing, requirements, methods, test planning, data reporting system, data reduction and analysis, reliability test standards.

Text Books:

Reference Books:
Unit I: Fundamental aspects of Electrical Machine Design:

Design of Machines, Design Factors, Limitations in design, Modern Trends in design, manufacturing Techniques.

Unit II: Design of DC Machines:

Unit III: Design of Transformers:

Output Equations of Single Phase and Three Phase Transformers, Choice of Specific Loadings, Expression for Volts/Turn, Determination of Main Dimensions of the Core, Estimation of Number of Turns and Conductor Cross Sectional area of Primary and Secondary Windings, No Load Current. Expression for the Leakage Reactance of core type transformer with concentric coils, and calculation of Voltage Regulation. Design of Tank and Cooling (Round and Rectangular) Tubes.

Unit IV: Design of Three Phase Induction Motors:

Unit V: Design of Three Phase Synchronous Machines:

Text Books / Reference Books

Unit-I: State Space Analysis of Continuous System:

State space analysis, Solution of state equation, determination of state-transition matrix, using Laplace method, Similarity transformation method and Caley-Hamilton Method.

Unit-II: Analysis of Discrete System:

Concept of state feedback design, Determination of controllability Matrix and test of controllability, State feedback controller design via pole placement method, Concept of state observer design, Determination of the observability matrix and test of observability condition, Design of the full state observer using pole placement.

Unit-III: Nonlinear systems:

Nonlinear System Modeling Analysis of Nonlinear system (Inverted Pendulum)via Linearization, Describing function analysis of nonlinear system, Stability Analysis of Nonlinear system using Describing function Analysis.

Unit-IV: Phase Plane Analysis:

Construction of Phase portrait using Isoclines approach, Singular points, Phase plane analysis of 2nd order linear system, Phase plane analysis of nonlinear control system.

Unit-V: Liapunov Stability Analysis:

Concept of stability in the sense of Liapunov. Linear system analysis using Liapunov approach, Determination of Liapunov functions using variable gradient method, Stability analysis of nonlinear systems.

Text Books:

3. K. Ogata, “ Modern Control Engineering”, PHI.

Reference Books:

1. B.C. Kuo, “Digital Control Systems” Sounders College Publishing
Unit-I: Introduction to Power Quality:

Terms and definitions of transients, Long duration Voltage Variations: under Voltage, Under Voltage and Sustained Interruptions; Short Duration Voltage Variations: interruption, Sag, Swell; Voltage Imbalance; Notching D C offset, waveform distortion; voltage fluctuation; power frequency variations.

Unit-II: Voltage Sag:

Sources of voltage sag: motor starting, arc furnace, fault clearing etc; estimating voltage sag performance and principle of its protection; solutions at end user level- Isolation Transformer, Voltage Regulator, Static UPS, Rotary UPS, and Active Series Compensator.

Unit-III: Electrical Transients:

Sources of Transient Over voltages- Atmospheric and switching transients- motor starting transients, pf correction capacitor switching transients, ups switching transients, neutral voltage swing etc; devices for over voltage protection.

Unit-IV: FACT Systems:

Introduction – Terms &Definition,Fact Controllers, Type of FACT devices i.e. SSC, SVC, TSC, SSS, TCSC, UPFC Basic relationship for power flow control.

Unit- V: Harmonics:

Causes of harmonics; current and voltage harmonics: measurement of harmonics; effects of harmonics on – Transformers, AC Motors, Capacitor Banks, Cables, and Protection Devices, Energy Metering, Communication Lines etc., Harmonic Mitigation Techniques.

Text Books:

3. C. Sankaran, “Power Quality” CRC Press
| REE082 | POWER SYSTEM DYNAMICS, CONTROL AND MONITORING (NPTEL) | L T P: 3 1 0 | 4 Credit |

Refer following web link for course details:

https://onlinecourses.nptel.ac.in/noc19_ee14/preview
UNIT-I: Introduction:
Modern Power Systems Operation and Control, Different types of Power System Analysis.

Text Books:

UNIT-I:
Need of EHV transmission, standard transmission voltage, comparison of EHV AC & DC transmission systems and their applications & limitations, surface voltage gradients in conductor, distribution of voltage gradients on sub-conductors, mechanical considerations of transmission lines, modern trends in EHV AC and DC transmission.

UNIT-II: EHV AC Transmission:
Corona loss formulas, corona current, audible noise – generation and characteristics corona pulses their generation and properties, radio interference (RI) effects, over voltage due to switching, ferroresonance, reduction of switching surges on EHV system, principle of half wave transmission.

UNIT-III: Extra High Voltage Testing:
Characteristics and generation of impulse voltage, generation of high AC and DC voltages, measurement of high voltage by sphere gaps and potential dividers. Consideration for Design of EHV Lines: Design factors under steady state limits, EHV line insulation design based upon transient over voltages. Effects of pollution on performance of EHV lines.

UNIT-IV: EHV DC Transmission – I:
Types of dc links, converter station, choice of converter configuration and pulse number, effect of source inductance on operation of converters. Principle of DC link control, converter controls characteristics, firing angle control, current and excitation angle control, power control, starting and stopping of DC link.

UNIT-V: EHV DC Transmission – II:
Converter faults, protection against over currents and over voltages, smoothing reactors, generation of harmonics, AC and DC filters, Multi Terminal DC systems (MTDC): Types, control, protection and applications.

Text Books:
UNIT-I: Introduction:

Energy sources, Energy demand and supply, Energy crisis, Future Scenario, Menace of power theft, reasons for power pilferage, electricity loss and theft-National and Global Scenario, Security seals and tampering, harmonics and power theft, Control Over power theft.

UNIT-II: Power Theft in Electro-mechanical Meters:

UNIT-III:

Energy system efficiency, Energy conservation aspects, Instrumentation and measurements.

Principles of Energy Management and Energy Audit:

General principles, Planning and program, Introduction to energy audit, General methodology, Site surveys, Energy systems survey, Energy audit, Instrumentation, Analysis of data and results.

UNIT-IV: Electrical Load and Lighting Management:

General Principles, Illumination and human comfort, Lighting systems, Equipment’s, Electrical systems, Electrical load analysis, Peak load controls.

Demand Side Management: Concept and Scope of Demand Side Management, Evolution of Demand Side Management. DSM Strategy, Planning, Implementation and its application, Customer Acceptance & its implementation issues, National and International Experiences with DSM.

Text Books:

1. G. Sreenivasan, “Power Theft”, PHI Learning Private Limited
Unit-I: Image:
Image formation, image geometry perspective and other transformation, stereo imaging elements of visual perception [60] Digital Image-sampling and quantization serial & parallel Image processing

Unit-II: Signal Processing:
Fourier, Walsh-Hadamard discrete cosine and Hotelling transforms and their properties, filters, correlators and convolvers, Histogram specification, smoothing, sharpening, frequency domain enhancement, pseudo-colour enhancement

Unit-III: Image Restoration:
Constrained and unconstrained restoration Wiener filter, characteristics of Wiener filter, geometric and radiometric correction Image data compression-Huffman and other codes transform compression, predictive compression two tone Image compression, block coding, run length coding, and contour coding.

Unit-IV: Segmentation Techniques
Thresholding approaches, region growing, relaxation, line and edge detection approaches, edge linking, supervised and unsupervised classification techniques

Unit-V: Practical Applications
Finger print classification, signature verification, text recognition, map understanding, bio-logical cell classification. Analysis of biomedical images, Wavelet Transforms in One Dimension - The Discrete Wavelet Transform and The Continuous Wavelet Transform.

Text Books:

References:
Refer following web link for course details:

https://onlinecourses.nptel.ac.in/noc19_ee19/preview