Evaluation Scheme & Syllabus for

Master of Integrated Technology
(Computer Science & Engineering)

(Effective from the Session: 2019-20)
Master of Integrated Technology
Computer Science & Engineering
1st Year Structure in accordance with AICTE Model Curriculum Effective w.e.f.
Academic Session 2019-20

SEMESTER - I

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>EVALUATION SCHEME</th>
<th>END SEMESTER</th>
<th>TOTAL CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>MKAS101/</td>
<td>Physics/Chemistry</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MKAS102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MKAS103</td>
<td>Mathematics-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>MKEE 101/</td>
<td>Basic Electrical Engineering/Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MKCS101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MKCE101/</td>
<td>Engineering Graphics & Design/Workshop Practices</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MKWS101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOOCs (For Hons. Degree)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 WEEKS COMPULSORY INDUCTION PROGRAM

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>EVALUATION SCHEME</th>
<th>END SEMESTER</th>
<th>TOTAL CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>MKAS101</td>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MKAS102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MKAS103</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>MKEE 101/</td>
<td>Basic Electrical Engineering/Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MKCS101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MKCE101/</td>
<td>Engineering Graphics & Design/Workshop Practices</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MKWS101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOOCs (For Hons. Degree)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mini Project or Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

SEMESTER II

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>EVALUATION SCHEME</th>
<th>END SEMESTER</th>
<th>TOTAL CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>MKAS201</td>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MKAS202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MKAS203</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>MKEE201/</td>
<td>Basic Electrical Engineering/Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MKCS201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MKCE201/</td>
<td>Engineering Graphics & Design/Workshop Practices</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MKWS201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MKAS204</td>
<td>Professional English</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MOOCs (For Hons. Degree)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of MOOCs (NPTL) Based Recommended Courses for first year B. Tech Students

1. Developing Soft Skills and personality-Odd Semester-8 Weeks-3 Credits
2. Enhancing Soft Skills and personality-Even Semester-8 Weeks-3 Credits

AICTE Guidelines in Model Curriculum:

After successful completion of 160 credits, a student shall be eligible to get Under Graduate degree in Engineering. A student will be eligible to get Under Graduate degree with Honours only, if he/she completes additional university recommended courses only (Equivalent to 20 credits; NPTEL Courses of 4 Weeks, 8 Weeks and 12 Weeks shall be of 2, 3 and 4 Credits respectively) through MOOCs. For registration to MOOCs Courses, the students shall follow NPTEL Site http://nptel.ac.in/ as per the NPTEL policy and norms. The students can register for these courses through NPTEL directly as per the course offering in Odd/Even Semesters at NPTEL. These NPTEL courses (recommended by the University) may be cleared during the B. Tech degree program (not necessary one course in each semester). After successful completion of these Moocs courses the students, shall, provide their successful completion NPTEL status/certificates to the University (COE) through their college of study only. The student shall be awarded Hons. Degree (on successful completion of MOOCS based 20 credit) only if he/she secures 7.50 or above CGPA and passed each subject of that Degree Programme in single attempt without any grace marks.
SEMESTER – I

PHYSICS

Module - 1 Relativistic Mechanics: [8]
Frame of reference, Inertial & non-inertial frames, Galilean transformations, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein’s mass energy relation, Relativistic relation between energy and momentum, Massless particle.

Module- 2 Electromagnetic Field Theory: [8]
Continuity equation for current density, Displacement current, Modifying equation for the curl of magnetic field to satisfy continuity equation, Maxwell’s equations in vacuum and in non conducting medium, Energy in an electromagnetic field, Poynting vector and Poynting theorem, Plane electromagnetic waves in vacuum and their transverse nature. Relation between electric and magnetic fields of an electromagnetic wave, Energy and momentum carried by electromagnetic waves, Resultant pressure, Skin depth.

Module- 3 Quantum Mechanics: [8]
Black body radiation, Stefan’s law, Wien’s law, Rayleigh-Jeans law and Planck’s law, Wave particle duality, Matter waves, Time-dependent and time-independent Schrodinger wave equation, Born interpretation of wave function, Solution to stationary state Schrodinger wave equation for one-Dimensional particle in a box, Compton effect.

Module- 4 Wave Optics: [10]
Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton’s Rings and its applications. Fraunhofer diffraction at single slit and at double slit, absent spectra, Diffraction grating, Spectra with grating, Dispersive power, Resolving power of grating, Rayleigh’s criterion of resolution, Resolving power of grating.

Module- 5Fibre Optics & Laser: [10]

Course Outcomes:
1. To solve the classical and wave mechanics problems
2. To develop the understanding of laws of thermodynamics and their application in various processes
3. To formulate and solve the engineering problems on Electromagnetism & Electromagnetic Field Theory
4. To aware of limits of classical physics & to apply the ideas in solving the problems in their parent streams

Reference Books:
2. Introduction to Special Theory of Relativity- Robert Resnick (Wiley)
3. Optics - Brijlal& Subramanian (S. Chand)
4. Engineering Physics: Theory and Practical- Katiyar and Pandey (Wiley India)
5. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New)
Physics Lab

List of Experiments

Any ten experiments (at least four from each group).

Group A

1. To determine the wavelength of sodium light by Newton’s ring experiment.
2. To determine the wavelength of different spectral lines of mercury light using plane transmission grating.
3. To determine the specific rotation of cane sugar solution using polarimeter.
 4. To determine the focal length of the combination of two lenses separated by a distance and verify the formula for the focal length of combination of lenses.
4. To measure attenuation in an optical fiber.
5. To determine the wavelength of He-Ne laser light using single slit diffraction.
6. To study the polarization of light using He-Ne laser light.
7. To determine the wavelength of sodium light with the help of Fresnel’s bi-prism.
8. To determine the coefficient of viscosity of a given liquid.
9. To determine the value of acceleration due to gravity (g) using compound pendulum.

Group B

1. To determine the energy band gap of a given semiconductor material.
2. To study Hall effect and determine Hall coefficient, carrier density and mobility of a given semiconductor material using Hall effect setup.
3. To determine the variation of magnetic field with the distance along the axis of a current carrying coil and estimate the radius of the coil.
4. To verify Stefan’s law by electric method.
5. To determine resistance per unit length and specific resistance of a given resistance using Carey Foster’s Bridge.
6. To study the resonance condition of a series LCR circuit.
7. To determine the electrochemical equivalent (ECE) of copper.
8. To calibrate the given ammeter and voltmeter by potentiometer.
9. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its hysteresis loss.
10. To measure high resistance by leakage method.

Reference Books

1. Practical Physics- K. K. Dey & B. N. Dutta (Kalyani Publishers New Delhi)
2. Engineering Physics-Theory and Practical- Katiyar& Pandey (Wiley India)
3. Engineering Physics Practical- S K Gupta (KrishnaPrakashan Meerut)

Course Outcomes:

1. To determine the wavelength of sodium light by Newton’s ring experiment
2. To determine the wavelength of sodium light with the help of Fresnel’s bi-prism
3. To determine the variation of magnetic field with the distance along the axis of a current carrying coil and estimate the radius of the coil.
4. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its hysteresis loss.
CHEMISTRY

Module-1
Atomic and Molecular Structure:

Module-2
Spectroscopic techniques and Applications:
Elementary idea and simple applications of Rotational, Vibrational, Ultraviolet & Visible and Raman spectroscopy.

Module-3
Electrochemistry
Nernst Equation and application, relation of EMF with thermodynamic functions (\(\Delta H \), \(\Delta F \) and \(\Delta S \)). Lead storage battery. Corrosion; causes, effects and its prevention. Phase Rule and its application to water system.

Module-4

Module-5
Polymer; Basic concepts of polymer-Blend and composites, Conducting and biodegradable polymers. Preparation and application of some industrially important polymers (Buna-S, Buna-N, Neoprene, Nylon-6, nylon-6,6 and Terylene). General methods of synthesis of organo metallic compounds (Grignard reagent) and their applications.

Course Outcomes:

1. Use of different analytical instruments.
2. Measure molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water.
3. Measure hardness of water.
4. Estimate the rate constant of reaction.

Reference Books:

1. University Chemistry By B.H. Mahan
2. University Chemistry By C.N.R. Rao
3. Organic Chemistry By I.L. Finar
4. Physical Chemistry By S. Glasstone
5. Engineering Chemistry By S.S. Dara
6. Polymer Chemistry By Fre W., Billmeyer
7. Engineering Chemistry By Satya Prakash
LIST OF EXPERIMENTS

1. Determination of alkalinity in the given water sample.
2. Determination of temporary and permanent hardness in water sample using EDTA.
3. Determination of iron content in the given solution by Mohr’s method.
5. Determination of surface tension of given liquid.
6. Determination of chloride content in water sample.
7. Determination of available chlorine in bleaching powder.
11. Determination of rate constant of hydrolysis of esters.
12. Verification of Beer’s law.

NOTE: Choice of any 10 experiments from the above. Institute can change any 02 experiments from the aforesaid experiments.

Course Outcomes:

1. Use of different analytical instruments.
2. Measure molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water.
3. Measure hardness of water.
4. Estimate the rate constant of reaction.
MATHEMATICS-I

(Common to all B. Tech. Courses except B. Tech. (Biotechnology)&B. Tech. (Agricultural Engineering)

Module 1: Matrices [08]

Types of Matrices: Symmetric, Skew-symmetric and Orthogonal Matrices; Complex Matrices, Inverse and Rank of matrix using elementary transformations, Rank-Nullity theorem; System of linear equations, Characteristic equation, Cayley-Hamilton Theorem and its application, Eigen values and eigenvectors; Diagonalisation of a Matrix,

Module 2: Differential Calculus- I [08]

Introduction to limits, continuity and differentiability, Rolle’s Theorem, Lagrange’s Mean value theorem and Cauchy mean value theorem, Successive Differentiation \(n^{th}\) order derivatives, Leibnitz theorem and its application, Envelope, Involutes and Evolutes, Curve tracing: Cartesian and Polar co-ordinates

Module 3: Differential Calculus-II [08]

Partial derivatives, Total derivative, Euler’s Theorem for homogeneous functions, Taylor and Maclaurin’s theorems for a function of one and two variables, Maxima and Minima of functions of several variables, Lagrange Method of Multipliers, Jacobians, Approximation of errors.

Module 4: Multivariable Calculus-I [08]

Multiple integration: Double integral, Triple integral, Change of order of integration, Change of variables, Application: Areas and volumes, Center of mass and center of gravity (Constant and variable densities),

Module 5: Vector Calculus [08]

Vector differentiation: Gradient, Curl and Divergence and their Physical interpretation, Directional derivatives, Tangent and Normal planes.

Vector Integration: Line integral, Surface integral, Volume integral, Gauss’s Divergence theorem, Green’s theorem, Stoke’s theorem (without proof) and their applications.
COURSE OUTCOMES

1. Remember the concept of matrices and apply for solving linear simultaneous equations.

2. Understand the concept of limit, continuity and differentiability and apply in the study of Rolle's, Lagrange's and Cauchy mean value theorem and Leibnitz theorems.

3. Identify the application of partial differentiation and apply for evaluating maxima, minima, series and Jacobians.

4. Illustrate the working methods of multiple integral and apply for finding area, volume, centre of mass and centre of gravity.

5. Remember the concept of vector and apply for directional derivatives, tangent and normal planes. Also evaluate line, surface and volume integrals.

Text Books:-

Reference Books-

BASIC ELECTRICAL ENGINEERING

Module - 1: DC Circuits [08]

Electrical circuit elements (R, L and C), Concept of active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, Kirchhoff’s laws, Loop and nodal methods of analysis, Star-delta transformation, Superposition theorem, Thevenin theorem, Norton theorem.

Module - 2: Steady- State Analysis of Single Phase AC Circuits [10]

Representation of Sinusoidal waveforms – Average and effective values, Form and peak factors, Concept of phasors, phasor representation of sinusoidally varying voltage and current.

Analysis of single phase AC Circuits consisting of R, L, C, RL, RC, RLC combinations (Series and Parallel), Apparent, active & reactive power, Power factor, power factor improvement. Concept of Resonance in series & reactive power. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module - 3 : Transformers [08]

Module –4 : Electrical machines [08]

DC machines: Principle & Construction, Types, EMF equation of generator and torque equation of motor, applications of DC motors (simple numerical problems)

Three Phase Induction Motor: Principle & Construction, Types, Slip-torque characteristics, Applications (Numerical problems related to slip only)

Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications.

Three Phase Synchronous Machines: Principle of operation of alternator and synchronous motor and their applications.

Module –5 : Electrical Installations [06]

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Importance of earthing. Types of Batteries, Important characteristics for Batteries. Elementary calculations for energy consumption and savings, battery backup.
COURSE OUTCOMES

1. Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
2. Analyze the steady state behavior of single phase and three phase AC electrical circuits.
3. Identify the application areas of a single phase two winding transformer as well as an auto transformer and calculate their efficiency. Also identify the connections of a three phase transformer.
4. Illustrate the working principles of induction motor, synchronous machine as well as DC machine and employ them in different area of applications.
5. Describe the components of low voltage electrical installations and perform elementary calculations for energy consumption.

Spoken Tutorial (MOOCs):

1. AC DC Circuit Analysis using NgSpice, Open Source Software (http://spoken-tutorial.org)

Text Books:

Reference Books:

ELECTRICAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS

Note: A minimum of ten experiments from the following should be performed.

1. Verification of Kirchhoff’s laws
2. Verification of Superposition and Thevenin Theorem.
3. Measurement of power and power factor in a single phase ac series inductive circuit and study improvement of power factor using capacitor
4. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.
5. Connection and measurement of power consumption of a fluorescent lamp (tube light).
6. Measurement of power in 3- phase circuit by two wattmeter method and determination of its power factor for star as well as delta connected load.
7. Determination of parameters of ac single phase series RLC circuit
8. To observe the B-H loop of a ferromagnetic material in CRO.
9. Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single phase transformer
10. Determination of efficiency of a dc shunt motor by load test
11. To study running and speed reversal of a three phase induction motor and record speed in both directions.

COURSE OUTCOMES

1. Conduct experiments illustrating the application of KVL/KCL and network theorems to DC electrical circuits.
2. Demonstrate the behavior of AC circuits connected to single phase AC supply and measure power in single phase as well as three phase electrical circuits.
3. Perform experiment illustrating BH curve of magnetic materials.
5. Perform experiments on speed measurement and reversal of direction of three phase induction motor and Identify the type of DC and AC machines based on their construction.
Programming for Problem Solving

Module – 1 : (Introduction to Programming) [08]

Introduction to components of a computer system: Memory, processor, I/O Devices, storage, operating system, Concept of assembler, compiler, interpreter, loader and linker.

Idea of Algorithm: Representation of Algorithm, Flowchart, Pseudo code with examples, From algorithms to programs, source code.

Programming Basics: Structure of C program, writing and executing the first C program, Syntax and logical errors in compilation, object and executable code. Components of C language. Standard I/O in C, Fundamental data types, Variables and memory locations, Storage classes.

Module – 2 : (Arithmetic expressions & Conditional Branching) [08]

Arithmetic expressions and precedence: Operators and expression using numeric and relational operators, mixed operands, type conversion, logical operators, bit operations, assignment operator, operator precedence and associativity.

Conditional Branching: Applying if and switch statements, nesting if and else, use of break and default with switch.

Module – 3 : (Loops & Functions) [08]

Iteration and loops: use of while, do while and for loops, multiple loop variables, use of break and continue statements.

Functions: Introduction, types of functions, functions with array, passing parameters to functions, call by value, call by reference, recursive functions.

Module – 4 : (Arrays & Basic Algorithms) [08]

Arrays: Array notation and representation, manipulating array elements, using multi dimensional arrays. Character arrays and strings, Structure, union, enumerated data types, Array of structures, Passing arrays to functions.

Module – 5 : (Pointer & File Handling) [08]

Pointers: Introduction, declaration, applications, Introduction to dynamic memory allocation (malloc, calloc, realloc, free), Use of pointers in self-referential structures, notion of linked list (no implementation)
File handling: File I/O functions, Standard C preprocessors, defining and calling macros, command-line arguments.

COURSE OUTCOMES

1. To develop simple algorithms for arithmetic and logical problems.
2. To translate the algorithms to programs & execution (in C language).
3. To implement conditional branching, iteration and recursion.
4. To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
5. To use arrays, pointers and structures to develop algorithms and programs.

Text books:

1. Schum’s Outline of Programming with C by Byron Gottfried, McGraw-Hill
2. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
7. Let Us C By Yashwant P. Kanetkar.
 Addison-Wesley, 2006.
Programming for Problem Solving Lab

1. WAP that accepts the marks of 5 subjects and finds the sum and percentage marks obtained by the student.
2. WAP that calculates the Simple Interest and Compound Interest. The Principal, Amount, Rate of Interest and Time are entered through the keyboard.
3. WAP to calculate the area and circumference of a circle.
4. WAP that accepts the temperature in Centigrade and converts into Fahrenheit using the formula C/5=(F-32)/9.
5. WAP that swaps values of two variables using a third variable.
6. WAP that checks whether the two numbers entered by the user are equal or not.
7. WAP to find the greatest of three numbers.
8. WAP that finds whether a given number is even or odd.
9. WAP that tells whether a given year is a leap year or not.
10. WAP that accepts marks of five subjects and finds percentage and prints grades according to the following criteria:
 Between 90-100%---------------Print „A”
 80-90%------------------------ Print „B”
 60-80%------------------------ Print „C”
 Below 60%---------------------Print „D”
11. WAP that takes two operands and one operator from the user and perform the operation and prints the result by using Switch statement.
12. WAP to print the sum of all numbers up to a given number.
13. WAP to find the factorial of a given number.
14. WAP to print sum of even and odd numbers from 1 to N numbers.
15. WAP to print the Fibonacci series.
16. WAP to check whether the entered number is prime or not.
17. WAP to find the sum of digits of the entered number.
18. WAP to find the reverse of a number.
19. WAP to print Armstrong numbers from 1 to 100.
20. WAP to convert binary number into decimal number and vice versa.
21. WAP that simply takes elements of the array from the user and finds the sum of these elements.
22. WAP that inputs two arrays and saves sum of corresponding elements of these arrays in a third array and prints them.
23. WAP to find the minimum and maximum element of the array.
24. WAP to search an element in a array using Linear Search.
25. WAP to sort the elements of the array in ascending order using Bubble Sort technique.
26. WAP to add and multiply two matrices of order nxn.
27. WAP that finds the sum of diagonal elements of a mxn matrix.
28. WAP to implement strlen(), strcat(), strcpy() using the concept of Functions.
29. Define a structure data type TRAIN_INFO. The type contain Train No.: integer type Train name: string Departure Time: aggregate type TIME Arrival Time: aggregate type TIME Start station: string End station: string The structure type Time contains two integer members: hour and minute. Maintain a train timetable and implement the following operations:
 (i) List all the trains (sorted according to train number) that depart from a particular section.
 (ii) List all the trains that depart from a particular station at a particular time.
 (iii) List all the trains that depart from a particular station within the next one hour of a given time. (iv) List all the trains between a pair of start station and end station.
30. WAP to swap two elements using the concept of pointers.
31. WAP to compare the contents of two files and determine whether they are same or not.
32. WAP to check whether a given word exists in a file or not. If yes then find the number of times it occurs.

COURSE OUTCOMES

1. To write programs for arithmetic and logical problems.
2. To translate the algorithms to programs & execution (in C language).
3. To write programs for conditional branching, iteration and recursion.
4. To write programs using functions and synthesize a complete program using divide and conquer approach.
5. Write programs using arrays, pointers and structures.
Engineering Graphics and Design

Module 1: Introduction to Engineering Drawing, Orthographic Projections [08]

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Scales – Plain and Diagonal Scales
Principles of Orthographic Projections – Conventions – Projections of Points and Lines inclined to both planes; Projections of planes inclined Planes – Auxiliary Planes.

Module 2: Projections and Sections of Regular Solids [08]

Sections in lined to both the Planes – Auxiliary Views; Simple annotation, dimensioning and scale. Floor plans the include: windows, doors and fixtures such as WC, Bath, sink, shower, etc.
Prism, Cylinder, Pyramid, Cone – Auxiliary Vies: Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder and Cone.

Module 3: Isometric Projections [08]

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conversions.

Module 4: Computer Graphics [08]

Listing the computer technologies the impact on graphical communication, Demonstration knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects: Isometric Views of lines, Planes, Simple and compound Solids];

Set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles:

Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to pater using the print command: orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modelling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, Multiview, auxiliary, and section views. Spatial visualization exercises Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling:
Module 5: Demonstration of a simple team design project

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modelling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).

Course Outcomes

1: Understanding of the visual aspects of engineering design
2: Understanding of engineering graphics standards and solid modelling
3: Effective communication through graphics
4: Applying modern engineering tools necessary for engineering practice
5: Applying computer-aided geometric design
6: Analysis of Isometric views
7: Creating working drawings

Suggested Text/Reference Books:
(vi) (Corresponding set of) CAD Software Theory and User Manuals.
WORKSHOP PRACTICE

LIST OF EXPERIMENTS

Machine shop:
- Study of machine tools in particular Lathe machine
- Demonstration of different operations on Lathe machine
- Practice of Facing, Plane Turning, step turning, taper turning, knurling and parting.
- Study of Quick return mechanism of Shaper.

Fitting shop:
- Preparation of T-Shape Work piece as per the given specifications.
- Preparation of U-Shape Work piece which contains: Filing, Sawing, Drilling, Grinding.
- Practice marking operations.

Carpentry:
- Study of Carpentry Tools, Equipment and different joints.
- Practice of Cross Half lap joint, Half lap Dovetail joint and Mortise Tenon Joint

Electrical & Electronics
- Introduction to House wiring, different types of cables. Types of power supply, types of motors, Starters, distribution of power supply, types of bulbs, parts of tube light, Electrical wiring symbols.
- Soldering and desoldering of Resistor in PCB.
- Soldering and desoldering of IC in PCB.
- Soldering and desoldering of Capacitor in PCB

Welding:
- Instruction of BI standards and reading of welding drawings.
- Butt Joint
- Lap Joint
- TIG Welding
- MIG Welding

Casting:
- Introduction to casting processes

Smithy
- Sharpening any arc and edge.
- Preparing small arc and edge,
- Repair of agricultural implements and power plough, use of power hammer etc.

Plastic Moulding & Glass Cutting
- Introduction to Patterns, pattern allowances, ingredients of moulding sand and melting furnaces. Foundry tools and their purposes
- Demo of mould preparation
- Practice – Preparation of mould
- Glass cutting
COURSE OUTCOMES

1. Study and practice on machine tools and their operations
2. Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry and welding
3. Identify and apply suitable tools for machining processes including turning, facing, thread cutting and tapping
4. Welding and soldering operations
5. Apply basic electrical engineering knowledge for house wiring practice

Text Books:
Module - 1 Relativistic Mechanics: [8]
Frame of reference, Inertial & non-inertial frames, Galilean transformations, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein’s mass energy relation, Relativistic relation between energy and momentum, Massless particle.

Module- 2 Electromagnetic Field Theory: [8]
Continuity equation for current density, Displacement current, Modifying equation for the curl of magnetic field to satisfy continuity equation, Maxwell’s equations in vacuum and in non-conducting medium, Energy in an electromagnetic field, Poynting vector and Poynting theorem, Plane electromagnetic waves in vacuum and their transverse nature. Relation between electric and magnetic fields of an electromagnetic wave, Energy and momentum carried by electromagnetic waves, Resultant pressure, Skin depth.

Module- 3 Quantum Mechanics: [8]
Black body radiation, Stefan’s law, Wien’s law, Rayleigh-Jeans law and Planck’s law, Wave particle duality, Matter waves, Time-dependent and time-independent Schrodinger wave equation, Born interpretation of wave function, Solution to stationary state Schrodinger wave equation for one-Dimensional particle in a box, Compton effect.

Module- 4 Wave Optics: [10]
Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton’s Rings and its applications. Fraunhoffer diffraction at single slit and at double slit, Absent spectra, Diffraction grating, Spectra with grating, Dispersive power, Resolving power of grating, Rayleigh’s criterion of resolution, Resolving power of grating.

Module- 5Fibre Optics & Laser: [10]
Fibre Optics: Introduction to fibre optics, Acceptance angle, Numerical aperture, Normalized frequency, Classification of fibre, Attenuation and Dispersion in optical fibres.
Course Outcomes:

1. To solve the classical and wave mechanics problems
2. To develop the understanding of laws of thermodynamics and their application in various processes
3. To formulate and solve the engineering problems on Electromagnetism & Electromagnetic Field Theory
4. To aware of limits of classical physics & to apply the ideas in solving the problems in their parent streams

Reference Books:

2. Introduction to Special Theory of Relativity- Robert Resnick (Wiley)
3. Optics - Brijlal& Subramanian (S. Chand)
4. Engineering Physics: Theory and Practical- Katiyar and Pandey (Wiley India)
5. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New)
PHYSICS LAB

List of Experiments (Any ten experiments (at least four from each group).

Group A

1. To determine the wavelength of sodium light by Newton’s ring experiment.
2. To determine the wavelength of different spectral lines of mercury light using plane transmission grating.
3. To determine the specific rotation of cane sugar solution using polarimeter.
4. To determine the focal length of the combination of two lenses separated by a distance and verify the formula for the focal length of combination of lenses.
5. To measure attenuation in an optical fiber.
6. To determine the wavelength of He-Ne laser light using single slit diffraction.
7. To study the polarization of light using He-Ne laser light.
8. To determine the wavelength of sodium light with the help of Fresnel’s bi-prism.
9. To determine the coefficient of viscosity of a given liquid.
10. To determine the value of acceleration due to gravity (g) using compound pendulum.

Group B

1. To determine the energy band gap of a given semiconductor material.
2. To study Hall effect and determine Hall coefficient, carrier density and mobility of a given semiconductor material using Hall effect setup.
3. To determine the variation of magnetic field with the distance along the axis of a current carrying coil and estimate the radius of the coil.
4. To verify Stefan’s law by electric method.
5. To determine resistance per unit length and specific resistance of a given resistance using Carey Foster’s Bridge.
6. To study the resonance condition of a series LCR circuit.
7. To determine the electrochemical equivalent (ECE) of copper.
8. To calibrate the given ammeter and voltmeter by potentiometer.
9. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its hysteresis loss.
10. To measure high resistance by leakage method.

Course Outcomes:
1. To determine the wavelength of sodium light by Newton’s ring experiment
2. To determine the wavelength of sodium light with the help of Fresnel’s bi-prism
3. To determine the variation of magnetic field with the distance along the axis of a current carrying coil and estimate the radius of the coil.
4. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its hysteresis loss.

Reference Books
1. Practical Physics- K. K. Dey & B. N. Dutta (Kalyani Publishers New Delhi)
2. Engineering Physics-Theory and Practical- Katiyar& Pandey (Wiley India)
3. Engineering Physics Practical- S K Gupta (KrishnaPrakashan Meerut)
Module-1
Atomic and Molecular Structure:

Module-2
Spectroscopic techniques and Applications:
Elementary idea and simple applications of Rotational, Vibrational, Ultraviolet& Visible and Raman spectroscopy.

Module-3
Electrochemistry

Module-4

Module-5
Polymer: Basic concepts of polymer-Blend and composites, Conducting and biodegradable polymers. Preparation and application of some industrially important polymers (Buna-S, Buna-N, Neoprene, Nylon-6, nylon-6,6 and Terylene). General methods of synthesis of organometallic compounds (Grignard reagent) and their applications.

Course Outcomes:
1. Get an understanding of the theoretical principles understanding molecular structure, bonding and properties.
2. Know the fundamental concepts of determination of structure with various techniques.
3. Know the fundamental concepts of chemistry applicable in industrial processes.

Reference Books:
1. University Chemistry By B.H. Mahan
2. University Chemistry By C.N.R. Rao
3. Organic Chemistry By I.L. Finar
4. Physical Chemistry By S. Glasstone
5. Engineering Chemistry By S.S. Dara
6. Polymer Chemistry ByFre W., Billmeyer
7. Engineering Chemistry By Satya Prakash
CHEMISTRY- PRACTICAL

LIST OF EXPERIMENTS

1. Determination of alkalinity in the given water sample.
2. Determination of temporary and permanent hardness in water sample using EDTA.
3. Determination of iron content in the given solution by Mohr’s method.
5. Determination of surface tension of given liquid.
6. Determination of chloride content in water sample.
7. Determination of available chlorine in bleaching powder.
11. Determination of rate constant of hydrolysis of esters.
12. Verification of Beer’s law.

NOTE: Choice of any 10 experiments from the above. Institute can change any 02 experiments from the aforesaid experiments.

Course Outcomes:

1. Use of different analytical instruments.
2. Measure molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water.
3. Measure hardness of water.
4. Estimate the rate constant of reaction.
MATHEMATICS-II

(Common to all B. Tech. Courses except B. Tech., Biotechnology and Agricultural Engineering)

Module 1: Ordinary Differential Equation of Higher Order [10]

Linear differential equation of n^{th} order with constant coefficients, Simultaneous linear differential equations, Second order linear differential equations with variable coefficients, Solution by changing independent variable, Reduction of order, Normal form, Method of variation of parameters, Cauchy-Euler equation, Series solutions (Frobenius Method).

Module 2: Multivariable Calculus-II [08]

Improper integrals, Beta & Gamma function and their properties, Dirichlet’s integral and its applications, Application of definite integrals to evaluate surface areas and volume of revolutions.

Module 3: Sequences and Series [08]

Definition of Sequence and series with examples, Convergence of sequence and series, Tests for convergence of series, (Ratio test, D’ Alembert’s test, Raabe’s test). Fourier series, Half range Fourier sine and cosine series.

Module 4: Complex Variable – Differentiation [08]

Limit, Continuity and differentiability, Functions of complex variable, Analytic functions, Cauchy- Riemann equations (Cartesian and Polar form), Harmonic function, Method to find Analytic functions, Conformal mapping, Mobius transformation and their properties

Module 5: Complex Variable –Integration [08]

Complex integrals, Contour integrals, Cauchy- Goursat theorem, Cauchy integral formula, Taylor’s series, Laurent’s series, Liouville’s theorem, Singularities, Classification of Singularities, zeros of analytic functions, Residues, Methods of finding residues, Cauchy Residue theorem, Evaluation of real integrals of the type and .

COURSE OUTCOMES

1. Understand the concept of differentiation and apply for solving differential equations.
2. Remember the concept of definite integral and apply for evaluating surface areas and volumes.
3. Understand the concept of convergence of sequence and series. Also evaluate Fourier series
4. Illustrate the working methods of complex functions and apply for finding analytic functions.
5. Apply the complex functions for finding Taylor’s series, Laurent’s series and evaluation of definite integrals.
Text Books:

Reference Books:

BASIC ELECTRICAL ENGINEERING

Module - 1: DC Circuits

Electrical circuit elements (R, L and C), Concept of active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, Kirchhoff’s laws, Loop and nodal methods of analysis, Star-delta transformation, Superposition theorem, Thevenin theorem, Norton theorem.

Module - 2: Steady-State Analysis of Single Phase AC Circuits

Representation of Sinusoidal waveforms – Average and effective values, Form and peak factors, Concept of phasors, phasor representation of sinusoidally varying voltage and current.

Analysis of single phase AC Circuits consisting of R, L, C, RL, RC, RLC combinations (Series and Parallel), Apparent, active & reactive power, Power factor, power factor improvement. Concept of Resonance in series & parallel circuits, bandwidth and quality factor.

Three phase balanced circuits, voltage and current relations in star and delta connections.

Module - 3: Transformers

Module - 4: Electrical machines

DC machines: Principle & Construction, Types, EMF equation of generator and torque equation of motor, applications of DC motors (simple numerical problems)

Three Phase Induction Motor: Principle & Construction, Types, Slip-torque characteristics, Applications (Numerical problems related to slip only)

Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications.

Three Phase Synchronous Machines: Principle of operation of alternator and synchronous motor and their applications.

Module - 5: Electrical Installations

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Importance of earthing. Types of Batteries, Important characteristics for Batteries. Elementary calculations for energy consumption and savings, battery backup.
COURSE OUTCOMES

1. Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
2. Analyze the steady state behavior of single phase and three phase AC electrical circuits.
3. Identify the application areas of a single phase two winding transformer as well as an auto transformer and calculate their efficiency. Also identify the connections of a three phase transformer.
4. Illustrate the working principles of induction motor, synchronous machine as well as DC machine and employ them in different area of applications.
5. Describe the components of low voltage electrical installations and perform elementary calculations for energy consumption.

Spoken Tutorial (MOOCs):

1. AC DC Circuit Analysis using NgSpice, Open Source Software (http://spoken-tutorial.org)

Text Books:

Reference Books:

ELECTRICAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS

Note: A minimum of ten experiments from the following should be performed.

1. Verification of Kirchhoff’s laws
2. Verification of Superposition and Thevenin Theorem.
3. Measurement of power and power factor in a single phase ac series inductive circuit and study improvement of power factor using capacitor
4. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.
5. Connection and measurement of power consumption of a fluorescent lamp (tube light).
6. Measurement of power in 3-phase circuit by two wattmeter method and determination of its power factor for star as well as delta connected load.
7. Determination of parameters of ac single phase series RLC circuit
8. To observe the B-H loop of a ferromagnetic material in CRO.
9. Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single phase transformer
10. Determination of efficiency of a dc shunt motor by load test
11. To study running and speed reversal of a three phase induction motor and record speed in both directions.

COURSE OUTCOMES

1. Conduct experiments illustrating the application of KVL/KCL and network theorems to DC electrical circuits.
2. Demonstrate the behavior of AC circuits connected to single phase AC supply and measure power in single phase as well as three phase electrical circuits.
3. Perform experiment illustrating BH curve of magnetic materials.
5. Perform experiments on speed measurement and reversal of direction of three phase induction motor and Identify the type of DC and AC machines based on their construction.
Programming for Problem Solving

Module – 1 : (Introduction to Programming) [08]

Introduction to components of a computer system: Memory, processor, I/O Devices, storage, operating system, Concept of assembler, compiler, interpreter, loader and linker.

Idea of Algorithm: Representation of Algorithm, Flowchart, Pseudo code with examples, From algorithms to programs, source code.

Programming Basics: Structure of C program, writing and executing the first C program, Syntax and logical errors in compilation, object and executable code. Components of C language. Standard I/O in C, Fundamental data types, Variables and memory locations, Storage classes.

Module – 2 : (Arithmetic expressions & Conditional Branching) [08]

Arithmetic expressions and precedence: Operators and expression using numeric and relational operators, mixed operands, type conversion, logical operators, bit operations, assignment operator, operator precedence and associativity.

Conditional Branching: Applying if and switch statements, nesting if and else, use of break and default with switch.

Module – 3 : (Loops & Functions) [08]

Iteration and loops: use of while, do while and for loops, multiple loop variables, use of break and continue statements.

Functions: Introduction, types of functions, functions with array, passing parameters to functions, call by value, call by reference, recursive functions.

Module – 4 : (Arrays & Basic Algorithms) [08]

Arrays: Array notation and representation, manipulating array elements, using multi-dimensional arrays. Character arrays and strings, Structure, union, enumerated data types, Array of structures, passing arrays to functions.

Module – 5 : (Pointer& File Handling) [08]

Pointers: Introduction, declaration, applications, Introduction to dynamic memory allocation (malloc, calloc, realloc, free), Use of pointers in self-referential structures, notion of linked list (no implementation)

File handling: File I/O functions, Standard C preprocessors, defining and calling macros, command-line arguments.
COURSE OUTCOMES

1. To develop simple algorithms for arithmetic and logical problems.
2. To translate the algorithms to programs & execution (in C language).
3. To implement conditional branching, iteration and recursion.
4. To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
5. To use arrays, pointers and structures to develop algorithms and programs.

Text books:
1. Schum’s Outline of Programming with C by Byron Gottfried, McGraw-Hill
2. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
7. Let Us C By Yashwant P. Kanetkar.
1. WAP that accepts the marks of 5 subjects and finds the sum and percentage marks obtained by the student.
2. WAP that calculates the Simple Interest and Compound Interest. The Principal, Amount, Rate of Interest and Time are entered through the keyboard.
3. WAP to calculate the area and circumference of a circle.
4. WAP that accepts the temperature in Centigrade and converts into Fahrenheit using the formula \(\frac{C}{5} = \frac{F-32}{9} \).
5. WAP that swaps values of two variables using a third variable.
6. WAP that checks whether the two numbers entered by the user are equal or not.
7. WAP to find the greatest of three numbers.
8. WAP that finds whether a given number is even or odd.
9. WAP that tells whether a given year is a leap year or not.
10. WAP that accepts marks of five subjects and finds percentage and prints grades according to the following criteria:

 Between 90-100%--------------Print „A“
 80-90%----------------------Print „B“
 60-80%----------------------Print „C“
 Below 60%-------------------Print „D“

11. WAP that takes two operands and one operator from the user and perform the operation and prints the result by using Switch statement.
12. WAP to print the sum of all numbers up to a given number.
13. WAP to find the factorial of a given number.
14. WAP to print sum of even and odd numbers from 1 to N numbers.
15. WAP to print the Fibonacci series.
16. WAP to check whether the entered number is prime or not.
17. WAP to find the sum of digits of the entered number.
18. WAP to find the reverse of a number.
19. WAP to print Armstrong numbers from 1 to 100.
20. WAP to convert binary number into decimal number and vice versa.
21. WAP that simply takes elements of the array from the user and finds the sum of these elements.
22. WAP that inputs two arrays and saves sum of corresponding elements of these arrays in a third array and prints them.
23. WAP to find the minimum and maximum element of the array.
24. WAP to search an element in a array using Linear Search.
25. WAP to sort the elements of the array in ascending order using Bubble Sort technique.
26. WAP to add and multiply two matrices of order nxn.
27. WAP that finds the sum of diagonal elements of a mxn matrix.
28. WAP to implement strlen (), strcat (), strcpy () using the concept of Functions.
29. Define a structure data type TRAIN_INFO. The type contain Train No.: integer type Train name: string Departure Time: aggregate type TIME Arrival Time: aggregate type TIME Start station: string End station: string The structure type Time contains two integer members: hour and minute. Maintain a train timetable and implement the following operations:
 (i) List all the trains (sorted according to train number) that depart from a particular section.
 (ii) List all the trains that depart from a particular station at a particular time.
 (iii) List all he trains that depart from a particular station within the next one hour of a given time.
 (iv) List all the trains between a pair of start station and end station.
30. WAP to swap two elements using the concept of pointers.
31. WAP to compare the contents of two files and determine whether they are same or not.
32. WAP to check whether a given word exists in a file or not. If yes then find the number of times it occurs.

COURSE OUTCOMES

1. To write programs for arithmetic and logical problems.
2. To translate the algorithms to programs & execution (in C language).
3. To write programs for conditional branching, iteration and recursion.
4. To write programs using functions and synthesize a complete program using divide and conquer approach.
5. write programs using arrays, pointers and structures.
Engineering Graphics and Design

Module 1: Introduction to Engineering Drawing, Orthographic Projections [08]

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Scales - Plain and Diagonal Scales
Principles of Orthographic Projections – Conventions – Projections of Points and Lines inclined to both planes; Projections of planes inclined Planes – Auxiliary Planes.

Module 2: Projections and Sections of Regular Solids [08]

Sections in lined to both the Planes – Auxiliary Views; Simple annotation, dimensioning and scale. Floor plans the include: windows, doors and fixtures such as WC, Both, sink, shower, etc.
Prism, Cylinder, Pyramid, Cone – Auxiliary Views: Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder and Cone.

Module 3: Isometric Projections [08]

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conversions.

Module 4: Computer Graphics [08]

Listing the computer technologies the impact on graphical communication, Demonstration knowledge of the theory of CAD software [such as: The Menu System, Tollbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects: Isometric Views of lines, Planes, Simple and compound Solids];

Set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles:

Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command: orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modelling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, Multi view, auxiliary, and section views. Spatial visualization exercises Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling:

Module 5: Demonstration of a simple team design project [08]
Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modelling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).

Course Outcomes

1: Understanding of the visual aspects of engineering design
2: Understanding of engineering graphics standards and solid modelling
3: Effective communication through graphics
4: Applying modern engineering tools necessary for engineering practice
5: Applying computer-aided geometric design
6: Analysis of Isometric views
7: Creating working drawings

Suggested Text/Reference Books:
(vi) (Corresponding set of) CAD Software Theory and User Manuals.
WORKSHOP PRACTICE

LIST OF EXPERIMENTS

Machine shop:
• Study of machine tools in particular Lathe machine
• Demonstration of different operations on Lathe machine
• Practice of Facing, Plane Turning, step turning, taper turning, knurling and parting.
• Study of Quick return mechanism of Shaper.

Fitting shop:
• Preparation of T-Shape Work piece as per the given specifications.
• Preparation of U-Shape Work piece which contains: Filing, Sawing, Drilling, Grinding.
• Practice marking operations.

Carpentry:
• Study of Carpentry Tools, Equipment and different joints.
• Practice of Cross Half lap joint, Half lap Dovetail joint and Mortise Tenon Joint

Electrical & Electronics
• Introduction to House wiring, different types of cables. Types of power supply, types of motors, Starters, distribution of power supply, types of bulbs, parts of tube light, Electrical wiring symbols.
• Soldering and desoldering of Resistor in PCB.
• Soldering and desoldering of IC in PCB.
• Soldering and desoldering of Capacitor in PCB

Welding:
• Instruction of BI standards and reading of welding drawings.
• Butt Joint
• Lap Joint
• TIG Welding
• MIG Welding

Casting:
• introduction to casting processes

Smithy
• Sharpening any arc and edge.
• Preparing small arc and edge,
 □ Repair of agricultural implements and power plough, use of power hammer etc.

□ Plastic Moulding& Glass Cutting
• Introduction to Patterns, pattern allowances, ingredients of moulding sand and melting furnaces. Foundry tools and their purposes
• Demo of mould preparation
• Practice – Preparation of mould
• Glass cutting
COURSE OUTCOMES

1. Study and practice on machine tools and their operations
2. Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry and welding
3. Identify and apply suitable tools for machining processes including turning, facing, thread cutting and tapping
4. Welding and soldering operations
5. Apply basic electrical engineering knowledge for house wiring practice

Text Books:
PROFESSIONAL ENGLISH

Module 1- Basics of Technical English

Technical English: Definition; Extent & Coverage; Dimensions; Reading; Skimming; Scanning; Churning & Assimilation; Writing: Methods: Inductive; Deductive; Exposition; Linear; Interrupted; Spatial & Chronological etc; Technical Communication; Approaches: Brevity; Objectivity; Simplicity; Utility & Clarity. Listening: Active; Passive; Thinking strategies: Positive & Logical thinking; Speaking: Essentials Nuances & Modes of Speech Delivery.

Module 2- Components of Technical Writing

Vocabulary Building: Select words; Concept of word formation; Word formation; Root words from foreign languages & their use in English; Prefixes & Suffixes: Derivatives; Synonyms; Antonyms; Abbreviations. Homophones. One word substitutes; Requisites of Sentences.

Module 3- Basic Technical Writing Skills

Forms: Business writing: Principle; Purchase & Sales Letters; Drafts; Official Writing: Official Letter; D.O. Letter; Notices; Agenda; Minutes of Meeting; Sentence Structure; Phrases & Clauses in sentences; Coherence; Unity; Emphasis in Writing; Devices; Use of Writing methods in Documents; Techniques of writing.

Module 4- Common Grammatical Errors & Technical Style

Subject-verb agreement; Correct usage: Noun; Pronoun; Agreement; Modifiers; Articles; Prepositions; Cliches; Redundancies; Technical Style: Features; Choice of words; Sentences: Descriptive; Narrative; Expository; Defining & Classifying; Length of paragraph; Writing of Introduction & Conclusion.

Module 5- Presentation Strategies & Oral Communications

Analysis of locale; Audience; Modulating Style & Content; Speaking with confidence; Kinesics; Paralinguistic features of Voice-Dynamics: Pitch; Intonation; Stress & Rhythm; Conversation & dialogues; Communication at work-place; etc.

COURSE OUTCOMES

1. Students will be enabled to understand the basic objective of the course by being acquainted with specific dimensions of communication skills i.e. Reading, Writing, Listening, Thinking and Speaking.

2. Students would be able to create substantial base by the formation of strong professional vocabulary for its application at different platforms and through numerous modes as Comprehension, reading, writing and speaking etc.

3. Students will apply it at their work place for writing purposes such as Presentation/official drafting/administrative communication and use it for document/project/report/research paper writing.
4. Students will be made to **evaluate** the correct & error-free writing by being well-versed in rules of English grammar & cultivate relevant technical style of communication & presentation at their work place & also for academic uses.

5. Students will **apply** it for practical and oral presentation purposes by being honed up in presentation skills and voice-dynamics. They will apply techniques for developing interpersonal communication skills and positive attitude leading to their professional competence.

Text Books:

Reference Books:
5. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House