EVALUATION SCHEME & SYLLABUS

FOR

B. TECH. 3rd YEAR (EE)

ELECTRICAL ENGINEERING

BASED ON

AICTE MODEL CURRICULUM

[Effective from the Session: 2020-21]
EVALUATION SCHEME - B.TECH 3rd YEAR (ELECTRICAL ENGINEERING)

SEMESTER V

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Codes</th>
<th>Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CT</td>
<td>TA</td>
</tr>
<tr>
<td>1</td>
<td>KEE501</td>
<td>Power System - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>KEE502</td>
<td>Control System</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>KEE503</td>
<td>Electrical Machines-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>KEE051-KEE054</td>
<td>Departmental Elective-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>KEE055-KEE058</td>
<td>Departmental Elective-II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>KEE551</td>
<td>Power System-I Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>KEE552</td>
<td>Control System Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>KEE553</td>
<td>Electrical Machines - II Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>KEE554</td>
<td>Mini Project or Internship *</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>KNC501/KNC502</td>
<td>Constitution of India, Law and Engineering / Indian Tradition, Culture and Society</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>MOOCs (Essential for Hons. Degree)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

*The Mini Project or internship (4 weeks) conducted during summer break after IV semester and will be assessed during V semester.

DEPARTMENT ELECTIVE - I

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEE051</td>
<td>Robotics</td>
</tr>
<tr>
<td>KEE052</td>
<td>Sensors and Transducers</td>
</tr>
<tr>
<td>KEE053</td>
<td>Industrial Automation and Control</td>
</tr>
<tr>
<td>KEE054</td>
<td>Electrical Standards and Engineering Practices</td>
</tr>
</tbody>
</table>

DEPARTMENT ELECTIVE - II

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEE055</td>
<td>Optimization Techniques</td>
</tr>
<tr>
<td>KEE056</td>
<td>Neural Networks & Fuzzy System</td>
</tr>
<tr>
<td>KEE057</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>KEE058</td>
<td>Analog & Digital Communication</td>
</tr>
</tbody>
</table>
SEMESTER VI

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Codes</th>
<th>Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>CT TA Total</td>
<td>PS TE PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>KEE601</td>
<td>Power System-II</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100 150</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>KEE602</td>
<td>Microprocessor and Microcontroller</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100 150</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>KEE603</td>
<td>Power Electronics</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100 150</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>KEE06*</td>
<td>Departmental Elective-III</td>
<td>3 0 0</td>
<td>30 20 50</td>
<td>100 150</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>KOE06*</td>
<td>Open Elective-I</td>
<td>3 0 0</td>
<td>30 20 50</td>
<td>100 150</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>KEE651</td>
<td>Power System-II Lab</td>
<td>0 0 2</td>
<td></td>
<td>25 25 50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>KEE652</td>
<td>Microprocessor and Microcontroller Lab</td>
<td>0 0 2</td>
<td></td>
<td>25 25 50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>KEE653</td>
<td>Power Electronics Lab</td>
<td>0 0 2</td>
<td></td>
<td>25 25 50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>KNC601/ KNC602</td>
<td>Constitution of India, Law and Engineering / Indian Tradition, Culture and Society</td>
<td>2 0 0 15 10 25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MOOCs (Essential for Hons. Degree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17 3 6</td>
<td></td>
<td>900 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT ELECTIVE - III
- KEE 061 Special Electrical Machines
- KEE 062 Electrical Machine Design
- KEE 063 Digital Control System
- KEE 064 Electrical and Hybrid Vehicles
B.Tech 3rd Year
V Semester
Syllabus
POWER SYSTEM-I

Pre-requisites of the course: Basic Electrical Engineering, Networks Analysis and Synthesis, Electromagnetic Field Theory.

<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Describe the working principle and basic components of conventional power plants as well as the other aspects of power generation.</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Recognize elements of power system and their functions, as well as compare the different types of supply systems. Illustrate different types of conductors, transmission lines and various performance parameters of transmission line for short, medium and long transmission line.</td>
<td>K4</td>
</tr>
<tr>
<td>CO3 Calculate sag and tension in overhead lines with and without wind and ice loading. Classify different type of insulators, determine potential distribution over a string of insulator, string efficiency and its improvement.</td>
<td>K4</td>
</tr>
<tr>
<td>CO4 Compute the inductance and capacitance of single phase, three phase lines with symmetrical and unsymmetrical spacing. Composite conductors-transposition, bundled conductors, and understand the effect of earth on capacitance of transmission lines.</td>
<td>K4</td>
</tr>
<tr>
<td>CO5 Elucidate different types of cables and assess the Resistance and capacitance parameters of cables, grading of cables and compare overhead lines and cables.</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)

K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

UNIT-I (Power Generation):
Introduction: Basic structure of power system, sources of electric energy: conventional and non-conventional; Layout of Hydro-electric, Thermal and Nuclear power plants, Concept of cogeneration, combined heat and power, and captive power plants.

Load curve, load duration curve, Concept of Connected Load, Maximum Demand, Average load, Demand Factor, Load factor, Diversity Factor, Capacity Factor, Utilization factor, Plant use factor, Installed capacity, Reserves, role of load diversity in power system economy. Load Sharing between Base load and Peak Load

UNIT-II (Transmission & Distribution of Electric Power- I):
Single line diagram of Power system, choice of transmission voltage, Different kinds of supply system and their comparison.

Configurations of transmission lines: Types of conductors, Bundled Conductors, resistance of line, skin effect, Kelvin’s law, Proximity effect,

Corona Effect: factors affecting the Corona, Corona Power Loss, Advantages and Disadvantages.

Performance of Lines: Representation of lines, short transmission lines, medium length lines, nominal T and \(\pi \)-representations, long transmission lines. The equivalent circuit representation of a long Line, A, B, C, D constants, Ferranti Effect.
UNIT-III (Transmission & Distribution of Electric Power- II):
Mechanical Design of Over Headlines: Catenary curve, calculation of sag & tension, effects of wind and ice loading, sag template, vibration dampers
Overhead line Insulators: Type of insulators and their applications, potential distribution over a string of insulators, methods of equalizing the potential, string efficiency

UNIT-IV (Transmission Line Parameters):
Inductance and Capacitance Calculations of Transmission Lines: Line conductors, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, Composite conductors-transposition, bundled conductors, and effect of earth on capacitance.

UNIT-V (Insulated Cables):
Insulated Cables: Introduction, insulation, insulating materials, Extra high voltage cables, grading of cables, insulation resistance of a cable, Capacitance of a single core and three core cables, Overhead lines versus underground cables, types of cables

Textbooks:

Reference Books:

2. Deshpande M.V, 'Elements of Electrical Power systems Design’, Pitman, New Delhi, PHI Learning Private Limited,
CONTROL SYSTEM

Pre-requisites of course: Basic signal systems

<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Obtain transfer functions to predict the correct operation of open loop and closed loop control systems and identify the basic elements, structures and the characteristics of feedback control systems.</td>
<td>K3</td>
</tr>
<tr>
<td>CO 2 Measure and evaluate the performance of basic control systems in time domain. Design specification for different control action.</td>
<td>K4</td>
</tr>
<tr>
<td>CO 3 Analyze the stability of linear time-invariant systems in time domain using Routh-Hurwitz criterion and root locus technique.</td>
<td>K4</td>
</tr>
<tr>
<td>CO 4 Determine the stability of linear time-invariant systems in frequency domain using Nyquist criterion and Bode plot.</td>
<td>K4</td>
</tr>
<tr>
<td>CO 5 Design different type of compensators to achieve the desired performance of control System by root locus and Bode plot method. Develop and analyze the intermediate states of the system using state space analysis.</td>
<td>K5</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)
K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

Unit-I:
Control System Concepts: Elements of control systems, concept of open loop and closed loop systems, Examples and application of open loop and closed loop systems, Mathematical Modelling of Physical Systems (Electro Mechanical), Determination of transfer function by block diagram reduction techniques and signal flow method using Mason’s gain formula, Basic Characteristics of negative feedback control systems.

Control System Components: Constructional and working concept of AC & DC servomotor, syncho’s, stepper motor and tachometer.

Unit-II:
Time Response Analysis: Standard test signals, time response analysis of first and second order systems, time response specifications of second order system for unit step input, location of roots of characteristics equation and corresponding time response, steady state errors and error constants.

Basic modes of feedback control: Proportional, Derivative, Integral and PID controllers.

Unit-III:
Stability and Algebraic Criteria: Concept of stability and its necessary conditions, Routh-Hurwitz criteria and its limitations.

Unit-IV:
Frequency Response Analysis: Frequency Response analysis from transfer function model, Construction of polar and inverse polar plots.

Stability in Frequency Domain: Nyquist stability criterion, Determination of gain and phase margin from Bode & Nyquist Plots, Correlation between time and Frequency Responses.

Unit-V

Introduction to Design: The design problems and preliminary considerations of lead, lag and lead-lag compensation networks, design of closed loop systems using compensation techniques in time and frequency domains.

State Space Technique: The concept of state & space, State-space model of physical system, conversion of state-space to transfer function model and vice-versa, State transition matrix, Concept of controllability and observability and their testing.

Text Book:

5. D. Roy Choudhary, “Modern Control Engineering”, Prentice Hall of India.

Reference Books:

ELECTRICAL MACHINE-II

Pre-requisites of course: Basic Electrical Engineering, Electrical Machine-I

<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1 Demonstrate the constructional details and principle of operation of three phase induction and synchronous machines.</td>
<td>K3</td>
</tr>
<tr>
<td>CO 2 Analyze the performance of the three phase induction and synchronous machines using the phasor diagrams and equivalent circuits.</td>
<td>K4</td>
</tr>
<tr>
<td>CO 3 Select appropriate three phase AC machine for any application and appraise its significance.</td>
<td>K4</td>
</tr>
<tr>
<td>CO 4 Start and observe the various characteristics of three phase induction & synchronous machines</td>
<td>K4</td>
</tr>
<tr>
<td>CO 5 Explain the principle of operation and performance of single-phase induction motor & universal motor.</td>
<td>K3</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)

K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

Unit- I: Synchronous Machine-I
Constructional features, Armature winding, EMF Equation, Winding coefficients, Equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage regulation using Synchronous Impedance method, MMF method, Potier’s Triangle method, Voltage and frequency control (Governor system) of alternators, Parallel operation of synchronous generators, Operation on infinite bus, Synchronizing power and torque co-efficient.

UNIT – II: Synchronous Machine II
Two reaction theory, Transient and sub-transient reactance, Power flow equations of cylindrical and salient pole machines, Operating characteristics. Synchronous Motor - Starting methods, Effect of varying field current at different loads, V- curves, Hunting & damping, Synchronous condenser.

UNIT – III: Three phase Induction Machine - I
Constructional features, Rotating magnetic field, Principle of operation, Phasor diagram, Equivalent circuit, Torque and power equations, Torque- slip characteristics, No load & blocked rotor tests, Efficiency.

UNIT – IV: Three phase Induction Machine- II
Starting, Deep bar and double cage rotors, Cogging & Crawling, Speed control (with and without emf injection in rotor circuit).
UNIT – V: Single phase Induction Motor
Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods, Repulsion motor, Universal motor.

Text Books:
2. Rajendra Prasad, "Electrical Machines", PHI
3. PS Bimbhra, "Electrical Machinery", Khanna Publisher

Reference Books:
3. PS Bimbhra, "Generalized Theory.
4. Samarjit Ghosh, "Electrical Machines", Pearson Education
POWER SYSTEM LABORATORY - I

Pre-requisites of course: Basic understanding of Scilab/MATLAB/C/C++

Course Outcomes:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Use programming tools /Software: Scilab, MATLAB or any C, C++ - Compiler and formulate a program/simulation model for calculation of various parameters related to transmission line.</td>
</tr>
</tbody>
</table>

Upon the completion of the course, the student will be able to:

Note: Minimum ten experiments are to be performed from the following list, on a software platform preferably on Scilab, MATLAB, or any C, C++ - Compiler

1. Calculate the parameters of single-phase transmission line
2. Calculate the parameters of three phase single circuit transmission line
3. Calculate the parameters of three phase double circuit transmission line
4. Determine the ABCD constant for transmission line.
5. Simulate the Ferranti effect in transmission line
6. Calculate the corona loss of transmission line
7. Calculation of sag & tension of transmission line
8. Calculation of string efficiency of insulator of transmission line
9. Calculation for grading of underground cables
10. Simulate the skin effect in the transmission line
11. Calculation of ground clearance of transmission line
12. Calculate the parameters for underground cable.

Spoken Tutorial (MOOCs):

Spoken Tutorial MOOCs, 'Course on Scilab', IIT Bombay (http://spoken-tutorial.org/)
CONTROL SYSTEM LABORATORY

Pre-requisites of course: Basic understanding of Scilab/MATLAB or any equivalent open source software

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Determine the characteristics of control system components like ac servo motor, synchro, potentiometer, servo voltage stabilizer and use them in error detector mode.</td>
<td>K4</td>
</tr>
<tr>
<td>CO2 Compare the performance of control systems by applying different controllers / compensators.</td>
<td>K5</td>
</tr>
<tr>
<td>CO3 Analyze the behavior of dc motor in open loop and closed loop conditions at various loads & determine the response of 1st & 2nd order systems for various values of constant K.</td>
<td>K5</td>
</tr>
<tr>
<td>CO4 Apply different stability methods of time & frequency domain in control systems using software & examine their stability.</td>
<td>K4</td>
</tr>
<tr>
<td>CO5 Convert the transfer function into state space & vice versa & obtain the time domain response of a second order system for step input and their performance parameters using software.</td>
<td>K5</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Note: Minimum 10 experiments are to be performed from the following list:
1. To determine speed-torque characteristics of an AC servomotor.
2. To study
 i) Synchro Transmitter characteristics.
 ii) Obtain Synchro Transmitter – Receiver output vs input characteristics.
3. To determine response of first order and second order systems for step input for various values of constant ‘K’ using linear simulator unit and compare theoretical and practical results.
4. To study characteristics of positional error detector by angular displacement of two servo potentiometers.
5. To simulate and compare the response of 2nd order system with and without lead, lag, Lead- Lag compensator / simulate PID controller for transportation lag.
6. To study P, PI and PID temperature controller for an oven and compare their characteristics.
7. To study performance of servo voltage stabilizer at various loads using load bank.
8. To study behavior of separately excited dc motor in open loop and closed loop conditions at various loads.
Software based experiments (Scilab/MATLAB or any equivalent open source software)

9. To determine time domain response of a second order system for step input and obtain performance parameters.
10. To convert transfer function of a system into state space form and vice-versa.
11. To plot root locus diagram of an open loop transfer function and determine range of gain ‘k’ for stability.
12. To plot a Bode diagram of an open loop transfer function.
13. To draw a Nyquist plot of an open loop transfers functions and examine the stability of the closed loop system.

Spoken Tutorial (MOOCs):
Spoken Tutorial MOOCs, 'Course on Scilab', IIT Bombay (http://spoken-tutorial.org/)

Reference Books:
1. K.Ogata, “Modern Control Engineering” Prentice Hall of India.
ELECTRICAL MACHINE-II LABORATORY

Pre-requisites of course: Basic Electrical engineering Lab, Electrical Machine-I Lab.

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Perform various tests and demonstrate the various characteristics of three phase induction motor.</td>
<td>K4</td>
</tr>
<tr>
<td>CO2 Demonstrate the working of three phase synchronous machine under different operating conditions.</td>
<td>K4</td>
</tr>
<tr>
<td>CO3 Evaluate the performance of single-phase induction motor under different operating conditions.</td>
<td>K5</td>
</tr>
<tr>
<td>CO4 Develop simulation models for Electrical Machines.</td>
<td>K6</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)

K₁ – Remember K2 – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Note: Minimum 10 experiments are to be performed from the following list:

1. To perform no load and blocked rotor tests on a three phase squirrel cage induction motor and determine equivalent circuit.
2. To perform load test on a three phase induction motor and draw Torque – speed characteristics
3. To perform no load and blocked rotor tests on a single phase induction motor and determine equivalent circuit.
4. To study speed control of three phase induction motor by varying supply voltage and by keeping V/f ratio constant.
5. To perform open circuit and short circuit tests on a three phase alternator.
6. To determine V-curves and inverted V-curves of a three phase synchronous motor.
7. To determine the direct axis reactance (Xd) and quadrature axis reactance (Xq) of synchronous machine.
8. To study synchronization of an alternator with the infinite bus by using: (i) dark lamp method (ii) two bright and one dark lamp method.
9. To determine speed-torque characteristics of three phase slip ring induction motor and study the effect of including resistance, or capacitance in the rotor circuit.
10. To determine speed-torque characteristics of single phase induction motor and study the effect of voltage variation.
11. To determine speed-torque characteristics of a three phase induction motor by (i) keeping v/f ratio constant (ii) increasing frequency at the rated voltage.
12. To draw O.C. and S.C. characteristics of a three phase alternator from the experimental data and determine voltage regulation at full load, and unity, 0.8 lagging and leading power factors.
14. Load Test on Three Phase Alternator.

The available experiments from above list may be performed on virtual lab on following virtual lab link: http://vlab.co.in/
B.Tech 3rd Year
VI Semester
Syllabus
POWER SYSTEMS-II

Pre-requisites of course: Basic Electrical Engineering, Networks Analysis and Synthesis, Electromagnetic Field Theory, Power System-I, Electrical Machines-II

Course Outcomes:

CO1	Identify power system components on one line diagram of power system and its representation including the behaviour of the constituent components and sub systems and Analyse a network under both balanced and unbalanced fault conditions and design the rating of circuit breakers.	K4
CO2	Perform load flow analysis of an electrical power network and interpret the results of the analysis.	K4
CO3	Describe the concept of travelling waves in transmission lines and use the travelling wave theory to determine the over voltage caused by surge propagation in transmission networks.	K4
CO4	Assess the steady state and transient stability of the power system under various conditions.	K4
CO5	Describe Operating Principle of a relay and classify them according to applications. Explain working principle of Circuit breaker and phenomenon of arc production and quenching.	K3

KL- Bloom's Knowledge Level (K1, K2, K3, K4, K5, K6)
K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

UNIT-I (Fault Analysis in Power System):
One-line diagram, Impedance and reactance diagram, per unit system changing the base of per unit quantities, advantages of per unit system.

Symmetrical Components: Significance of positive, negative and zero sequence components, Average 3-phase power in terms of symmetrical components, sequence impedances and sequence networks.

Fault Calculations: Fault calculations, sequence network equations, single line to ground fault, line to line fault, double line to ground fault, three phase faults, faults on power systems, and faults with fault impedance, reactors and their location, short circuit capacity of a bus

UNIT-II (Load Flow Analysis):
Introduction, Formation of Z_{BUS} and Y_{BUS}, development of load flow equations, load flow solution using Gauss Siedel and Newton-Raphson method, Comparison of Gauss Siedel and Newton Raphson Method, approximation to N-R method, fast decoupled method.
UNIT-III (Travelling Waves in Power System):
Travelling Waves on Transmission Lines: Production of travelling waves, open circuited line, short circuited line, line terminated through a resistance, line connected to a cable, reflection and refraction at T-junction line terminated through a capacitance, capacitor connection at a T-junction, Attenuation of travelling waves, Bewley’s Lattice diagram.

UNIT-IV (Stability in Power System):
Power flow through a transmission line, Stability and Stability limit, Steady state stability study, derivation of Swing equation, transient stability studies by equal area criterion. Factors affecting steady state and transient stability and methods of improvement.

UNIT-V (Introduction to Power System Protection):
Relays: Operating Principle of a general relay,
Basic Terminology: Relay, Energizing Quantity, setting, Pickup, drop out, Flag, fault clearing time, Relay time, Breaker time, Overreach, Underreach; Classification of Relays according to applications, according to time. Over current Relay, Distance Protection, Differential Protection.

Text Books:
6. B. Ravindranath and M. Chander, Power system Protection and Switchgear, Wiley Eastern Ltd.

Reference Books:
MICROPROCESSOR AND MICROCONTROLLER

Pre-requisites of course: Digital Electronics, Computer Basics

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Demonstrate the basic architecture of 8085 & 8086 microprocessors</td>
<td>K2</td>
</tr>
<tr>
<td>CO 2 Illustrate the programming model of microprocessors & write program</td>
<td>K3</td>
</tr>
<tr>
<td>using 8085 microprocessor</td>
<td></td>
</tr>
<tr>
<td>CO 3 Interface different external peripheral devices with 8085 microprocessor</td>
<td>K3</td>
</tr>
<tr>
<td>CO 4 Comprehend the architecture of 8051 microcontroller</td>
<td>K2</td>
</tr>
<tr>
<td>CO 5 Compare advance level microprocessor & microcontroller for different</td>
<td>K4</td>
</tr>
<tr>
<td>applications</td>
<td></td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed Syllabus:

Unit- I:
Introduction to Microprocessor: Microprocessor architecture and its operations, Memory, Input & output devices, The 8085 MPU- architecture, Pins and signals, Timing Diagrams, Logic devices for interfacing, Memory interfacing, Interfacing output displays, Interfacing input devices, Memory mapped I/O.

Basic Programming concepts: Flow chart symbols, Data Transfer operations, Arithmetic operations, Logic Operations, Branch operation, Writing assembly language programs, Programming techniques: looping, counting and indexing. Additional data transfer and 16 bit arithmetic instruction, Logic operation: rotate, compare, counter and time delays, 8085 Interrupts.

Unit-II:
Intel 8086 microprocessor: Internal architecture (Bus Interface Unit, Execution unit, Pipelining, Register organization), Pin Diagram, Memory addressing, Physical memory organization, Interrupts (hardware & software interrupts)

Unit-III:
Peripheral Devices: 8237 DMA Controller, 8255 programmable peripheral interface, 8253/8254programmable timer/counter, 8259 programmable interrupt controller, 8251 USART and RS232C. Fundamental of Programming: Program structure & programming techniques for microprocessors, 8085 Addressing modes, 8085 Instruction set, Assembly language programming of 8085 microprocessor with examples (arithmetic operations on 8-bit numbers – add, subtract, multiply, divide, square & square root etc, largest/ smallest number; ascending/ descending order).

Unit-IV:
8051 Microcontroller Basics: Inside the Computer, Microcontrollers and Embedded Processors, Block Diagram of 8051, PSW and Flag Bits, 8051 Register Banks and Stack, Internal Memory Organization of 8051, IO Port Usage in 8051, Types of Special Function Registers and their uses in 8051, Pins Of 8051. Memory Address Decoding, 8031/51 Interfacing With External ROM And RAM. 8051 Addressing Modes.
Unit-V:

Assembly programming and instruction of 8051: Introduction to 8051 assembly programming, Assembling and running an 8051 program, Data types and Assembler directives, Arithmetic, logic instructions and programs, Jump, loop and call instructions, IO port programming. Programming 8051 Timers, Serial Port Programming, Interrupts Programming, Comparison of Microprocessor, Microcontroller, PIC and ARM processors and their application areas.

Text Books:
5. Fundamental of Microprocessor and Microcontrollers, B. RAM, Dhanpat Rai Publication
6. Soumita Kumar Mandal, Microprocessor and Microcontrollers Architecture Programming and Interfacing using 8085, 8086 and 8051, McGraw Hill
7. K. Ayala, 8051 Microcontroller, Cengage learning

Reference Books:
POWER ELECTRONICS

Pre-requisites of course: Basic Electrical Engineering, Network Analysis & Synthesis

Course Outcomes:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1 Demonstrate the characteristics as well as the operation of BJT, MOSFET, IGBT, SCR, TRIAC and GTO and identify their use in the power switching applications.</td>
<td>K4</td>
</tr>
<tr>
<td>CO2 Comprehend the non-isolated DC-DC converters and apply their use in different Power electronics applications.</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Analyze the phase controlled rectifiers and evaluate their performance parameters.</td>
<td>K5</td>
</tr>
<tr>
<td>CO4 Apprehend the working of single-phase ac voltage controllers, cyclo-converters and their various applications.</td>
<td>K3</td>
</tr>
<tr>
<td>CO5 Explain the single-phase and three phase bridge inverters differentiate between CSI and VSI and apply PWM for harmonic reduction.</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL- Bloom's Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed Syllabus:

Unit-I: Power semiconductor devices:
Introduction: Concept of Power Electronics, scope and applications, desired Characteristics of controllable switches
Power semiconductor switches and their characteristics: Power Diode, Power BJT, Power MOSFET, IGBT, SCR, TRIAC, GTO.

Unit-II:
Thyristor: Rating & protection, Methods of SCR commutation, Gate Drive Circuit, Series and Parallel operation.
DC-DC Converters: Introduction, Control Strategies, Buck converter, Boost Converter, Buck-Boost converter, Analysis of buck converter, Switched Mode power Supply (SMPS).

Unit-III: Phase Controlled Converters:
Single phase half wave controlled rectifier with various loads, Effect of freewheelingdiode, Single phase fully controlled and half controlled bridge converters with various loads. Performance Parameters of single phase uncontrolled and controlled converters, three phase half wave converters, Three phase fully controlled and half controlled bridge converters, Effect of source impedance, Single phase and three phase dual converters

Unit-IV: AC Voltage Controllers:
Principle of On-Off and phase controls, Single phase ac voltage controller with resistive and inductive loads, sequence control, Introduction to Matrix converter.
Cyclo Converters: Basic principle of operation, single phase to single phase, three phase to single phase output voltage equation.
Unit-V: Inverters:
Single phase and Three phase bridge inverters, voltage source inverters, current source inverters, Voltage control of single phase inverters, Pulse width modulation, Introduction to Multi level inverter.

Text Books:

Reference Books:

1. M.S. Jamil Asghar, “Power Electronics” Prentice Hall of India Ltd., 2004
POWER SYSTEM LAB-II

Pre-requisites of course: Power System-I Lab

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Test various relays for different characteristics and compare with the performance characteristics provided by manufacturers.</td>
<td>K4</td>
</tr>
<tr>
<td>CO2 Select the power system data for load-flow and fault studies and to develop a program to solve power flow problem using NR and GS methods</td>
<td>K6</td>
</tr>
<tr>
<td>CO3 Analyze various types of short circuit faults</td>
<td>K4</td>
</tr>
<tr>
<td>CO4 Demonstrate different numerical integration methods and factors influencing transient stability</td>
<td>K3</td>
</tr>
<tr>
<td>CO5 Determine the effect of load in long transmission line</td>
<td>K3</td>
</tr>
</tbody>
</table>

Note: - Minimum 10 experiments are to be performed from the following list:

(A) Hardware Based Experiments:

2. To Study the over-current relay and the effect of PSM and TSM.
3. To study percentage differential relay.
4. To study Impedance, MHO and Reactance type distance relays and zones of protection.
5. To study Ferranti effect of a transmission line/cable.
6. To measure the dielectric Strength of transformer oil.
7. To study the Synchronization of alternator with infinite bus bar.
8. To determine positive sequence, negative sequence and zero sequence reactance of an alternator.
9. To Study the effect of different shape of electrodes on dielectric (air) breakdown.
10. To Study the gas actuated Buchholz relay for oil filled transformer.
11. To determine the sub-transient (xd''), transient (xd') and steady state reactance (xd) of a synchronous machine.

* The available Experiments from above list may be performed on virtual lab on following virtual lab link: http://vlab.co.in/
(B) Simulation Based Experiments (using Scilab/MATLAB or any other equivalent open source software platform)

1. To obtain formation of Y-bus.
4. To perform symmetrical fault analysis in a power system.
5. To perform unsymmetrical fault analysis in a power system.
7. Determination of the stability of a SMIB system in occurrence of a fault by solving the Swing equation by Euler’s Method.

Text Books:

MICROPROCESSOR AND MICROCONTROLLER LAB

Pre-requisites of course: Digital Electronics, Computer Basics

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Study of microprocessor system</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Development of flow chart for understanding the data flow</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Learning assembly language to program microprocessor based system</td>
<td>K3</td>
</tr>
<tr>
<td>CO4 Interfacing different peripheral devices with the microprocessor</td>
<td>K4</td>
</tr>
<tr>
<td>CO5 Building logic for microprocessor based system</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL - Bloom's Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)

K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Note: Minimum ten experiments are to be performed from the following list (on 8085 / 8086 microprocessor)

1. To study 8085 / 8086 based microprocessor system
2. To perform mathematical operations (addition & subtraction) on two 8-bit numbers
3. To perform multiplication on two 8-bit numbers
4. To perform division on two 8-bit numbers
5. To develop and run a program for finding out the largest number from given two 8-bit numbers
6. To develop and run a program for finding out the smallest number from given two 8-bit numbers
7. To develop and run a program for arranging in ascending order of a given set of 8-bit numbers
8. To develop and run a program for arranging in descending order of a given set of 8-bit numbers
9. To perform conversion of temperature from degree F to degree C
10. To perform computation of square root of a given number
11. To obtain interfacing of 8255 – PPI with 8085 microprocessor
12. To perform microprocessor based traffic light control
13. To perform microprocessor based stepper motor operation through 8085 / 8086 kit
14. To obtain interfacing of DMA controller with 8085 / 8086 microprocessor
PART B SUGGESTIVE LIST OF EXPERIMENTS (Through Virtual Lab Link):

1. Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and subtraction of two Numbers. *(Through Virtual Lab Link)*
2. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers. *(Through Virtual Lab Link)*
3. To perform multiplication and division of two 8 bit numbers using 8085. *(Through Virtual Lab Link)*
4. To find the largest and smallest number in an array of data using 8085 instruction set.
5. To write a program using 8086 to arrange an array of data in ascending and descending order. *(Through Virtual Lab Link)*
6. To convert given Hexadecimal number into its equivalent ASCII number and vice versa using 8086 instruction set.
7. To convert given Hexadecimal number into its equivalent BCD number and vice versa using 8086 instruction set.
8. To interface 8253 programmable interval timer and verify the operation of 8253 in six different modes.
9. To write a program to initiate 8251 and to check the transmission and reception of character.
10. Serial communication between two 8085 through RS-232 C port.
11. Write a program of Flashing LED connected to port 1 of the 8051 Micro Controller
12. Write a program to generate 10 kHz square wave using 8051.
13. Write a program to show the use of INT0 and INT1 of 8051.
14. Write a program for temperature & to display on intelligent LCD display.
15. Interfacing of Stepper motor to 8051.
16. Interfacing of ADC to 8051.

Virtual Lab Link: http://vlabs.iitb.ac.in/vlabs-dev/labs_local/microprocessor/labs/explist.php

Available on: http://www.vlab.co.in/broad-area-electronics-and-communications
POWER ELECTRONICS LABORATORY

Pre-requisites of course: Basic Electrical Engineering, Network Analysis & Synthesis

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1</td>
<td>Demonstrate the characteristics and triggering of IGBT, MOSFET, Power transistor and SCR.</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze the performance of single phase fully controlled bridge rectifiers under different loading conditions.</td>
</tr>
<tr>
<td>CO3</td>
<td>Develop simulation models of power electronic circuits.</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Note: Minimum 10 experiments are to be performed from the following list:
1. To study triggering of (i) IGBT (ii) MOSFET (iii) power transistor
2. To study V-I characteristics of SCR and measure latching and holding currents.
3. To compare the R, RC & UJT trigger circuit for SCR.
4. To study the commutation circuit for SCR.
5. To study single phase fully controlled bridge rectifiers with resistive and inductive loads.
6. To study single phase fully controlled bridge rectifiers with DC motor load.
7. To study three-phase fully controlled bridge rectifier with resistive and inductive loads.
8. To study single-phase ac voltage regulator with resistive and inductive loads.
9. To study single phase cyclo-converter
10. To study the four quadrant operation of chopper circuit
11. To study MOSFET/IGBT based single-phase bridge inverter.

Software based experiments (Scilab/MATLAB or any equivalent open source software)
12. To obtain the simulation of single phase half wave controlled rectifier with R and RL load and plot load voltage and load current waveforms.
13. To obtain simulation of single phase fully controlled bridge rectifier and plot load voltage and load current waveform for inductive load.
14. To obtain simulation of single phase full wave ac voltage controller and draw load voltage and load current waveforms for inductive load.
15. To obtain simulation of step down dc chopper with L-C output filter for inductive load and determine steady-state values of output voltage ripples in output voltage and load current.

Text/Reference Books:
1. M.H. Rashid,”Power Electronics: Circuits, Devices & Applications”, Pearson Education
DEPARTMENTAL ELECTIVES
DEPARTMENT ELECTIVE-I

ROBOTICS

Pre-requisites of course: Basic Mathematics.

Course Outcomes:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1 Learn the basic terminology used in robotics.</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Conceptualize 3-D translation & orientation of robot arm kinematics.</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Understand different robotic actuators and power transmission systems.</td>
<td>K3</td>
</tr>
<tr>
<td>CO4 Classify the types of robotic grippers used in automation industries.</td>
<td>K2</td>
</tr>
<tr>
<td>CO5 Realization of robotic sensoric system and their interfacing with robot controller.</td>
<td>K3</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed Syllabus:

UNIT I: INTRODUCTION

Classifications of robots, Flexible automation vs. Robotic technology, Robot components and degree of freedom, Robot joints, coordinates and reference frames, characteristics of robots, Robot workspace, role of robots in Industry 4.0; Robot safety and social robotics.

UNIT II: KINEMATICS OF ROBOT

UNIT III: ROBOT ACTUATORS AND POWER TRANSMISSION SYSTEMS

Characteristics of actuating systems, comparison of hydraulic, pneumatic and electrical actuating system, Mechanical transmission method (concept only) - Gear transmission, Belt drives, cables, Roller chains, Link-Rod systems, Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws.

UNIT IV: ROBOT GRIPPERS

Classification of End effectors, Drive system for grippers - Mechanical adhesive vacuum-magnetic-grippers. Hooks & scoops, Active and passive grippers.

UNIT V: ROBOT SENSORS, CONTROL HARDWARE AND INTERFACING

TEXT BOOKS:

REFERENCES:

SENSORS AND TRANSDUCERS

Pre-requisites of course: Basic Electrical Engineering, Basic signals & systems

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Understand the working of commonly used sensors in industry for measurement of displacement, force and pressure.</td>
<td>K3</td>
</tr>
<tr>
<td>CO2 Recognize the working of commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Identify the application of machine vision.</td>
<td>K2</td>
</tr>
<tr>
<td>CO4 Conceptualize signal conditioning and data acquisition methods.</td>
<td>K2</td>
</tr>
<tr>
<td>CO5 Comprehend smart sensors and their applications in automation systems.</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed Syllabus:

Unit- I:

Sensors & Transducer: Definition, Classification of transducers, Advantages and Disadvantages of Electrical Transducers; Measurement of displacement using Potentiometer, LVDT & Optical Encoder; Measurement of force using strain gauges & load cells; Measurement of pressure using LVDT based diaphragm & piezoelectric sensor.

Unit-II:

Unit -III:

Machine Vision: Introduction to machine vision, Difference between machine vision and computer vision; Imaging Sensors: CCD and CMOS; sensing & digitizing function in machine vision, image processing and analysis, training the vision system in a pick and place robot.

Unit-IV:

Signal Conditioning: Introduction, Functions of signal conditioning equipment, need for amplification of signals, Types of amplifiers.

Data Acquisition Systems and Conversion: Introduction, Objectives & configuration of data acquisition system, Analog & Digital IO, Counters, Timers, need of data conversion.
Unit V:

Text Books:

1. DVS Murthy, Transducers and Instrumentation, PHI 2nd Edition 2013

Reference Books:

INDUSTRIAL AUTOMATION & CONTROL

Pre-requisites of course: Digital Electronics

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1 Understand the concept of automation, its terminology and basic communication protocol.</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Apply Relay logic for automation.</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Learn about PLC, its operation and application in automation.</td>
<td>K3</td>
</tr>
<tr>
<td>CO4 Analyze the industrial sensors, its terminology and how one can interface with PLC.</td>
<td>K3</td>
</tr>
<tr>
<td>CO5 Demonstrate Pneumatic system and its application in industry.</td>
<td>K3</td>
</tr>
</tbody>
</table>

KL - Bloom's Knowledge Level (K1, K2, K3, K4, K5, K6)
K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

Unit1: Introduction of Automation system

Introduction to Industrial Automation, Requirement of automation systems, Application areas, Architecture of Industrial Automation system, Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial communication protocols: modbus & profibus

Unit2: Automation using relay logic

Relay Circuits: Construction & Principle of Operation, Types of Relays, Relay as a memory element, Contactor Circuits, Advantages of Contactors over Relay, DOL circuit implementation using contactor, Automation problems based on relays, PLC Introduction: History & Current Trends, Basic Block Diagram of PLC, Classification of PLCs

Unit3: Automation using PLC

Types of PLC I/O: Analog and Digital, Sink and Source concept, PLC programming: Ladder diagram, Sequential flow chart, ladder programming, Timer instructions – On delay, Off delay, Cyclic and Retentive timers, Up/Down Counters, math instructions

Unit4: Industrial sensors and its application

Introduction to Industrial sensors: optical, inductive, capacitive Sensors, PNP and NPN senor concept, interfacing of sensors with PLC, 4-20 ma current loops, HART protocol, modes of HART protocol

Unit5: Basics of Pneumatics and its use in automation

Introduction to Pneumatics, Role in industries, Laws : Boyel’s law, Charlie’s Law Bernoulli Equation, Humidity(Absolute & Relative) , Dew Point (ADP, PDP) Basic, Pneumatic System (Compressor, After coolers, Dryers, Air Tank, Service Unit (FRL), Actuators(single acting, double acting), Valves : 2/2 & 3/2 Valves ,Problems based on valves and actuator
Text Books:

1. Industrial Instrumentation and Control, by Singh, McGraw Hill.
2. Programmable Logic Controllers with Control Logix, by Jon Stenerson, Delmar Publishers, 2009

Reference Books:

1. B. Pneumatic Systems-Principles and Maintenance Mazumdar S. R
ELECTRICAL STANDARDS AND ENGINEERING PRACTICES

Pre-requisites of course: Basic Electrical Engineering, Electrical Machines and Power System

Course Outcomes:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1 Interpret different National & International Electrical Standards in practice</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Understand Indian standards for cables, lighting and motors.</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Understand Indian standards of transformers, LV & HV switchgears</td>
<td>K3</td>
</tr>
<tr>
<td>CO4 Demonstrate the basic guidelines for National codes and design practices</td>
<td>K3</td>
</tr>
<tr>
<td>CO5 Select the size and type of transformer, cable & switchgear for electrical applications.</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)
K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

Unit-I (Introduction of Standards and Design practices)

Different Electrical standards & codes, overview of Indian Standards and International Standards (IS, IEC, IEEE, NEMA and Building codes etc.).

General engineering design practices, selection of voltage level, role of electrical studies and design calculations (load flow, fault level calculation, earthing and lightning calculation, voltage drop) in distribution system planning. Feasibility study, thermal and electrical resistivity of soil, Study of electrical drawings/layouts and cost estimation.

Unit-II (Electrical Standards-I)

Overview of IS standards for cables (IS-7098 IS-8130, IS-10810, IS-1554, IS-1255), IS standards for lighting (IS-3646, IS-10322, IS-6665) and IS standards for motors (IS-325, IS-900, IS-2253, IS-4029, IS-15999) - basic terminologies, type test and routine tests.

Efficiency class of motors as per IS/IEC standard.

Unit-III (Electrical Standards-II)

Transformer types, overview of IS standards for transformer (IS-2026, IS-6600 IS-10028, IS-11171), IS standards for LV & HV switchgears (IS-8623, IS/IEC-60898, IS/IEC-62271, IS-3427, IS-9920, IS-12729) - basic terminologies, type test and routine tests.

Instrument transformers (CT & PT), Instrument safety factor, VA burden, knee point voltage and accuracy classes.

Unit-IV (National Codes and Design practices)
Overview of National electrical code, National Building Code of India, Cable types, installation practices, derating factors and bonding methods, Earthing and lightning protection system, touch and step potentials, Hazardous area classification, electrical equipments for different hazardous zones.

Unit-V (Equipment Sizing & Selection, CEA Regulations)

Load estimation, sizing and selection of transformers, cables and switchgears, CEA Regulations 2010 and amendments, safety and installation guidelines.

Reference Books:

3. Central Electricity Authority Regulations and Amendments.
Pre-requisites of course: Basic mathematics

Course Outcomes:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Understand the importance of optimization techniques in engineering applications</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Learn optimization methods for solving linear programming problems</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Learn optimization methods for solving nonlinear programming problems</td>
<td>K3</td>
</tr>
<tr>
<td>CO4 Be aware of the concept of simulation and modern methods of optimization</td>
<td>K3</td>
</tr>
<tr>
<td>CO5 Apply optimization techniques to electrical engineering problems</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed syllabus:

Unit I

Unit II

Unit III
Non-Linear Programming: Standard form of non-linear programming, One-Dimensional Minimization Methods - Unimodal function, Dichotomous search, interval halving method; Unconstrained Optimization Techniques - Univariate method, Steepest descent method; Constrained Optimization Techniques - Interior Penalty function method, Exterior penalty function method.

Unit IV
Simulation: Definition, types of simulation, General process of simulation, advantages & disadvantages of simulation.
Project Management Techniques: PERT and CPM

Unit V
Case study (algorithm only): Economic load scheduling of power plant (without considering losses), maintenance scheduling of machines in manufacturing industry, fuzzy logic based speed control of DC machines.

Text Books:

Reference Books:
NEURAL NETWORKS & FUZZY SYSTEMS

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Apply the concepts of feed forward neural networks and their learning</td>
<td>K3</td>
</tr>
<tr>
<td>techniques.</td>
<td></td>
</tr>
<tr>
<td>CO 2 Comprehend the architecture, develop algorithms and apply the concepts of</td>
<td>K5</td>
</tr>
<tr>
<td>back propagation networks.</td>
<td></td>
</tr>
<tr>
<td>CO 3 Differentiate between the fuzzy and the crisp sets, apply the concepts of</td>
<td>K4</td>
</tr>
<tr>
<td>fuzziness and the fuzzy set theory.</td>
<td></td>
</tr>
<tr>
<td>CO 4 Select the membership functions, write rules and develop the fuzzy</td>
<td>K5</td>
</tr>
<tr>
<td>controller for Industrial applications.</td>
<td></td>
</tr>
<tr>
<td>CO 5 Demonstrate the working of fuzzy neural networks and identify its</td>
<td>K3</td>
</tr>
<tr>
<td>applications.</td>
<td></td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)

- **K1** – Remember
- **K2** – Understand
- **K3** – Apply
- **K4** – Analyze
- **K5** – Evaluate
- **K6** – Create

Detailed syllabus:

Unit-I: Neural Networks-I (Introduction & Architecture):

Unit-II: Neural Networks-II (Back propagation networks):
Architecture: perceptron model, solution, single layer artificial neural network, multilayer perception model; back propagation learning methods, effect of learning rule co-efficient; back propagation algorithm, factors affecting back propagation training, applications.

Unit-III: Fuzzy Logic-I (Introduction):
Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set theory and operations, Properties of fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp conversion.

Unit-IV: Fuzzy Logic –II (Fuzzy Membership, Rules):
Membership functions, interference in fuzzy logic, fuzzy if-then rules, Fuzzy implications and Fuzzy algorithms, Fuzzifications & Defuzzificaitons, Fuzzy Controller, Industrial applications.

Unit-V: Fuzzy Neural Networks:
L-R Type fuzzy numbers, fuzzy neutron, fuzzy back propagation (BP), architecture, learning in fuzzy BP, inference by fuzzy BP, applications.

Text Books:
1. Kumar Satish, “Neural Networks” Tata Mc Graw Hill

Reference Books:
1. Siman Haykin, “Neural Networks” Prentice Hall of India
2. Timothy J. Ross, “Fuzzy Logic with Engineering Applications” Wiley India
DIGITAL SIGNAL PROCESSING

Pre-requisites of course: Basic Signals & System, Network Analysis & Synthesis.

Course Outcomes:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Represent discrete sequence and LTI systems, frequency domain of discrete sequence. Compute Fourier transform. Draw structure of systems based on System type-IIR & FIR Systems.</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Describe sampling of signal and its reconstruction, processing of continuous time and discrete time signals. Sampling rate variation and application of multirate signal processing. Sampling effect in A/D and D/A conversion.</td>
<td>K3</td>
</tr>
<tr>
<td>CO3 Evaluate the response of LTI system and rational system function. Drive linear phase systems. Compute discrete Fourier transform (DFT) and calculate linear and circular convolution.</td>
<td>K5</td>
</tr>
<tr>
<td>CO4 Design IIR & FIR filters with the desired specification with the help of impulse invariant and bilinear transformation method for IIR, with the help of window techniques for FIR. Design Butterworth and Chebyshev filter response.</td>
<td>K6</td>
</tr>
<tr>
<td>CO5 Compute DFT using efficient algorithm like FFT in decimation in time and decimation in frequency both, using convolution property and Goertzel algorithm. Comparison between wavelet and Fourier transform. Application of WCT & DCT.</td>
<td>K5</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed syllabus:

Unit-I:
Discrete-Time Signals and Systems:
Sequences, discrete time systems, LTI systems, frequency domain representation of discrete time signals and systems, discrete time signals and frequency domain representation, Fourier Transform.
Realization of Digital Linear Systems:
IIR Filter Realization: Direct form, cascade realization, parallel form realization, Ladder structures- continued fraction expansion of H(z). FIR Filter Realization: Direct, Cascade, FIR Linear Phase Realization

Unit-II:
Sampling of Continuous Time Signals:
Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.
Unit-III:
Transform Analysis of LTI Systems:
Frequency response of LTI systems, system functions, frequency response for rational system functions, magnitude-phase relationship, all pass systems, minimum phase systems, and linear systems with generalized linear phase

Discrete Fourier Transform:
Concept and relations for DFT/IDFT, Twiddle factors and their properties, computational burden on direct DFT, DFT/IDFT as linear transformations, DFT/IDFT matrices, computation of DFT/IDFT by matrix method, multiplication of DFTs, circular convolution, computation of circular convolution by graphical, DFT/IDFT and matrix methods, linear filtering using DFT, aliasing error, filtering of long data sequences – Overlap-Save and Overlap-Add methods with example

Unit-IV:
Filter Design Techniques:

Unit-V:
Fast Fourier Transform:
Radix-2 algorithm, decimation-in-time, decimation-in-frequency algorithms, signal flow graphs, Butterflies, computations in one place, bit reversal, examples for DIT & DIF FFT Butterfly computations with examples.

Introduction to wavelet transform:
Wavelet comparison with Fourier transforms, Applications of Wavelet cosine transform, Discrete cosine transform (DCT).

Text Books:

Reference Books:
ANALOG & DIGITAL COMMUNICATION

Pre-requisites of course: Basic Signals & Systems.

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Understand the Amplitude Modulation in communication system.</td>
<td>K_2</td>
</tr>
<tr>
<td>CO 2 Comprehend the Frequency & Phase modulation.</td>
<td>K_2</td>
</tr>
<tr>
<td>CO 3 Realize the Pulse Modulation Techniques.</td>
<td>K_2</td>
</tr>
<tr>
<td>CO 4 Get the Digital Modulation Techniques and their use in communication system.</td>
<td>K_2</td>
</tr>
<tr>
<td>CO 5 Apply the concept of Information Theory in Communication Engineering.</td>
<td>K_3</td>
</tr>
</tbody>
</table>

K_1 – Remember K_2 – Understand K_3 – Apply K_4 – Analyze K_5 – Evaluate K_6 – Create

Detailed Syllabus:

UNIT I
Elements of communication system and its limitations, Amplitude modulation and detection, Generation and detection of DSB-SC, SSB and vestigial side band modulation, carrier acquisition AM transmitters and receivers, Superhetrodyne Receiver, IF amplifiers, AGC circuits, Frequency Division multiplexing.

Unit II
Angle Modulation: Basic definition, Narrow-Band and wideband frequency modulation, transmission bandwidth of FM signals, Generation and detection of frequency modulation, Generation and detection of Phase Modulation.
Noise: External noise, internal noise, noise calculations, signal to noise ratio.

Unit III
Pulse Modulation: Introduction, sampling process, Analog Pulse Modulation Systems, Pulse Amplitude Modulation (PAM), Pulse width modulation (PWM) and Pulse Position Modulation (PPM).

Unit IV
Digital Modulation Techniques: Types of digital modulation, waveforms for amplitude, frequency and phase shift keying, coherent and non-coherent methods for the generation of ASK, FSK and PSK. Comparisons of above digital modulation techniques.

Unit V
Time Division Multiplexing: Fundamentals, Electronic Commutator, Bit/byte interleaving, TI carrier system, synchronization and signaling of TI, TDM and PCM hierarchy, synchronization techniques.
Introduction to Information Theory: Measure of information, Entropy & Information rate, channel capacity, Hartley Shannan law, Huffman coding, shannan Fano coding.
Text Books:

Reference Books:
DEPARTMENT ELECTIVE-III
SPECIAL ELECTRICAL MACHINES

Pre-requisites of course: Electrical Machines-I & Electrical Machines-II.

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO 1 Describe the working principle, Constructional Features of different types of electrical machines including the fractional kilowatt machines.</td>
<td>K2</td>
</tr>
<tr>
<td>CO2 Analyse torque-speed characteristics of different electrical machines and interpret their performance and identify the suitable machine for an operation.</td>
<td>K4</td>
</tr>
<tr>
<td>CO3 Study different types of control techniques for a machine and identify the best control strategy based upon different constraints.</td>
<td>K4</td>
</tr>
<tr>
<td>CO4 Illustrate the use of stepper, BLDCs, SRM, and other special machines in the area of the various industrial and domestic as well as commercial applications of various fractional kilowatt machines.</td>
<td>K3</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K\textsubscript{1}, K\textsubscript{2}, K\textsubscript{3}, K\textsubscript{4}, K\textsubscript{5}, K\textsubscript{6})

K\textsubscript{1} – Remember K\textsubscript{2} – Understand K\textsubscript{3} – Apply K\textsubscript{4} – Analyze K\textsubscript{5} – Evaluate K\textsubscript{6} – Create

Detailed Syllabus:

Unit-I: Induction Machines: Concept of constant torque and constant power controls, SEIG, DFIG: Operating Principle, Equivalent Circuit, Characteristics, Applications, Linear Induction Motors. Construction, principle of operation, Linear force, and applications.

Two Phase AC Servomotors: Construction, torque-speed characteristics, performance and applications.

Unit-II: Stepper Motors: Constructional features, Principle of operation, Variable reluctance motor, Hybrid motor, Single and multistack configurations, Torque equations, Characteristics, Drive circuits, Microprocessor control of stepper motors, Closed loop control, Applications.

Unit-III: Switched Reluctance Motors: Constructional features, Rotary and Linear SRM, Principle of operation, Torque production, performance characteristics, Methods of Rotor position sensing, Sensor less operation, Closed loop control and Applications

UNIT-IV Permanent Magnet Machines: Permanent Magnet synchronous generator Operating Principle, Equivalent Circuit, Characteristics, Permanent magnet DC motors, sinusoidal PMAC motors, their important features and applications, PCB motors,

Permanent Magnet Brushless D.C. Motors: Principle of operation, Types, Magnetic circuit analysis, EMF and torque equations, Commutation, Motor characteristics and control, Applications.

UNIT-V: Single phase synchronous motor: construction, operating principle and characteristics of reluctance and hysteresis motors;

Single Phase Commutator Motors: Construction, principle of operation, characteristics of universal and repulsion motors;
TEXT BOOKS:

Reference Books:

Pre-requisites of course: Electrical Machine-I & Electrical Machine-II.

Course Outcomes:

<table>
<thead>
<tr>
<th>CO</th>
<th>Description</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td>Classify insulating materials for electrical machines and calculate mmf and magnetizing current.</td>
<td>K5</td>
</tr>
<tr>
<td>CO 2</td>
<td>Design the core, yoke, windings and the cooling system of a transformer.</td>
<td>K6</td>
</tr>
<tr>
<td>CO 3</td>
<td>Illustrate the core and armature design of DC and 3-phase synchronous machine.</td>
<td>K6</td>
</tr>
<tr>
<td>CO 4</td>
<td>Analyse computer aided design approaches and apply the concepts of optimization for the design of transformer, dc machine, three phase induction and synchronous machines.</td>
<td>K6</td>
</tr>
</tbody>
</table>

KL- Bloom’s Knowledge Level (K₁, K₂, K₃, K₄, K₅, K₆)
K₁ – Remember K₂ – Understand K₃ – Apply K₄ – Analyze K₅ – Evaluate K₆ – Create

Detailed syllabus:

UNIT-I
Basic Considerations: Basic concept of design, limitation in design, standardization, modern trends in design and manufacturing techniques, Classification of insulating materials. Calculation of total mmf and magnetizing current.

UNIT-II
Transformer Design: Output equation, design of core, yoke and windings, overall dimensions, Computation of no load current to voltage regulation, efficiency and cooling system designs.

UNIT-III:
Design of rotating machines – I: Output equations of rotating machines, specific electric and magnetic loadings, factors affecting size of rotating machines, separation of main dimensions, election of frame size, Core and armature design of dc and 3-phase ac machines

Unit-IV:
Design of rotating machines – II: Rotor design of three phase induction motors, Design of field system of DC machine and synchronous machines. Estimation of performance from design data.
Unit-V:

Computer Aided Design: Philosophy of computer aided design, advantages and limitations.

Computer aided design approaches analysis, synthesis and hybrid methods. Concept of optimization and its general procedure. Flow charts and ‘c’ based computer programs for the design of transformer, dc machine, three phase induction and synchronous machines

Text Books:

Reference Books:
DIGITAL CONTROL SYSTEM

Pre-requisites of course: Control System

Course Outcome	Knowledge Level, KL
Upon the completion of the course, the student will be able to:

CO 1	Represent discrete time systems under the form of z-domain transfer functions and state-space models.	K3
CO 2	Obtain the model of discrete-time systems by pulse transfer function.	K4
CO 3	Analyze stability, transient response and steady state behaviour of linear discrete-time systems, analytically and numerically using tools such as MATLAB and Simulink	K4
CO 4	Design sampled data control systems.	K5
CO 5	Describe Discrete state space model and test controllability and observability of systems.	K5

KL- Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)
K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed syllabus:

Unit 1: Introduction to digital control
Introduction, Discrete time system representation, Mathematical modelling of sampling process, Data reconstruction.

Unit 2: Modelling discrete-time systems by pulse transfer function
Revisiting Z-transform, Mapping of s-plane to z-plane, Pulse transfer function, Pulse transfer function of closed loop system, Sampled signal flow graph.

Unit 3: Stability analysis of discrete time systems

Unit 4: Design of sampled data control systems:
Root locus method, Controller design using root locus, Root locus-based controller design using MATLAB, Nyquist stability criteria, bode plot, Lead compensator design using Bode plot, Lag compensator design using Bode plot, Lag-lead compensator design in frequency domain.

Unit 5: Discrete state space model

References:

ELECTRIC AND HYBRID VEHICLES

Pre-requisites of course: Electrical Machines, Power Electronics

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Knowledge Level, KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the completion of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1 Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources</td>
<td>K3</td>
</tr>
<tr>
<td>CO2 Design and develop basic schemes of electric vehicles and hybrid electric vehicles.</td>
<td>K6</td>
</tr>
<tr>
<td>CO3 Choose proper energy storage systems for vehicle applications</td>
<td>K5</td>
</tr>
<tr>
<td>CO4 Identify various communication protocols and technologies used in vehicle networks.</td>
<td>K4</td>
</tr>
</tbody>
</table>

KL - Bloom’s Knowledge Level (K1, K2, K3, K4, K5, K6)
K1 – Remember K2 – Understand K3 – Apply K4 – Analyze K5 – Evaluate K6 – Create

Detailed Syllabus:

Unit1:

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles.

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical models to describe vehicle performance.

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

Unit2: Electric Propulsion unit:

Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit3: Energy Storage:

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.
Unit 4: Sizing the drive system:
Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit 5: Energy Management Strategies:
Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Text Books:
1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

Reference Books: