STUDY, EVALUATION SCHEME & SYLLABUS

For

B. VOC.
ROBOTICS AND AUTOMATION (RA)

Based on

AICE MODEL CURRICULUM
(EFFECTIVE FROM THE SESSION: 2020-21)
EVALUATION SCHEME

B. Voc Robotics and Automation

NSFQ Level 5 SEMESTER- I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Total Teaching/Training Hours</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT TA AT Total TE PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BRAV511</td>
<td>Basics of Industrial Automation</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BRAV512</td>
<td>Basic Mechanical Systems</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BRAV513</td>
<td>Welding Technology</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BRAV514</td>
<td>Basic Electrical and Electronics Systems</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BRAP511</td>
<td>Basic Electrical and Electronics Lab</td>
<td>30 20</td>
<td>50 1 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BRAP512</td>
<td>Pneumatics Lab</td>
<td>30 20 30</td>
<td>50 1 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BRAP513</td>
<td>Language Lab</td>
<td>30 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BRAT511</td>
<td>Welding Supervisor (ASC/Q3104)</td>
<td>Any one Training</td>
<td>150 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT512</td>
<td>MIG MAG or GMAW Welder (CSC/Q0209)</td>
<td>400hrs/8 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT513</td>
<td>Embedded Software Engineer (ELE/Q1501)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT514</td>
<td>CNC Setter Cum Operator (CSC/Q0123)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT515</td>
<td>Field Engineer RACW (ELE/Q3105)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>610</td>
<td>500 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSFQ Level 5 SEMESTER- II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Total Teaching/Training Hours</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT TA AT Total TE PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BRAV521</td>
<td>Sensor and Transducer</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BRAV522</td>
<td>Manufacturing Technology- I</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BRAV523</td>
<td>Pneumatic & Hydraulic Systems</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BRAV524</td>
<td>Basics of Industrial Robotics</td>
<td>30 10 5 5 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BRAP521</td>
<td>Mini Project</td>
<td>30 20 30</td>
<td>50 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BRAP522</td>
<td>Applied Robotic Control Lab</td>
<td>30 20 30</td>
<td>50 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BRAP523</td>
<td>Sensor and Transducer Lab</td>
<td>30 20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BRAT521</td>
<td>Welding Supervisor (ASC/Q3104)</td>
<td>Any one Training</td>
<td>150 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT522</td>
<td>MIG MAG or GMAW Welder (CSC/Q0209)</td>
<td>400hrs/8 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT523</td>
<td>Embedded Software Engineer (ELE/Q1501)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT524</td>
<td>CNC Setter Cum Operator (CSC/Q0123)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT525</td>
<td>Field Engineer RACW (ELE/Q3105)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>610</td>
<td>500 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GV: General Vocational; **VP:** Vocational Practical; **OJT:** On Job Training; **SSC:** Sector Skill Council

NSFQ Level 6 SEMESTER- III
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Total Teaching/ Training Hours</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td>AT</td>
</tr>
<tr>
<td>1</td>
<td>BRAV631</td>
<td>Manufacturing Technology- II</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>BRAV632</td>
<td>Electrical Machines For Automation</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>BRAV633</td>
<td>Fundamentals of Mechatronics</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>BRAV634</td>
<td>Machine Tools</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>BREA631</td>
<td>Environment&Ecology /Universal Human Values & Ethics</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>BRAP631</td>
<td>Mechatronics Lab</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BRAP632</td>
<td>Manufacturing Technology Lab</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BRAT631</td>
<td>Service Engineer – Installation (CSC/Q0501)</td>
<td>Any one Training</td>
<td>400 hrs/ 8 weeks</td>
<td>150</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BRAT632</td>
<td>Automation Specialist (ASC/Q6807)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT633</td>
<td>CNC Programmer (CSC/Q0401)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT634</td>
<td>Service Engineer – Breakdown Service (CSC/Q0503)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT635</td>
<td>Tool & Die Maker (CSC/Q0306)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>610</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSFQ Level 6 SEMESTER-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Total Teaching/ Training Hours</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td>AT</td>
</tr>
<tr>
<td>1</td>
<td>BRAV641</td>
<td>Tool and Die Making</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>BRAV642</td>
<td>CNC Technology</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>BRAV643</td>
<td>Internet of Things</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>BRAV644</td>
<td>Microprocessors and Microcontrollers</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>BRAH641</td>
<td>Universal Human Values & Ethics/ Environment & Ecology</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>BRAP641</td>
<td>IOT Lab</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BRAP642</td>
<td>Microprocessors and Microcontrollers</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BRAT641</td>
<td>Service Engineer – Installation (CSC/Q0501)</td>
<td>Any one Training</td>
<td>400 hrs/ 8 weeks</td>
<td>150</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BRAT642</td>
<td>Automation Specialist (ASC/Q6807)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT643</td>
<td>CNC Programmer (CSC/Q0401)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT644</td>
<td>Service Engineer – Breakdown Service (CSC/Q0503)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT645</td>
<td>Tool & Die Maker (CSC/Q0306)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. No.</td>
<td>Subject Code</td>
<td>Subject</td>
<td>Total Teaching/ Training Hours</td>
<td>Evaluation Scheme</td>
<td>End Semester</td>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td>AT</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>BRAV751</td>
<td>Embedded Processors</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>BRAV752</td>
<td>Robotics And Material Handling Systems</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>BRAV753</td>
<td>Modern Automated and Intelligent Vehicles</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>BRAV754</td>
<td>Implementation of Quality Management System</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>BREA751</td>
<td>Indian Constitution / Essence of Indian Traditional Knowledge</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>BRAP751</td>
<td>Electro-pneumatics Lab</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BRAP752</td>
<td>Modern Automated and Intelligent Vehicles Lab</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BRAT751</td>
<td>Embedded product designer Technical lead (ELE/Q1403)</td>
<td>Any one Training 400 hrs/ 8 weeks</td>
<td>150</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT752</td>
<td>Programmable Logic Controllers-programmer (IAS/Q5609)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT753</td>
<td>Product Design Manager L7 (ASC/Q8103)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>610</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSFQ Level 7 SEMESTER- VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Total Teaching/ Training Hours</th>
<th>Evaluation Scheme</th>
<th>End Semester</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td>AT</td>
<td>Total</td>
<td>TE</td>
</tr>
<tr>
<td>1</td>
<td>BRAV761</td>
<td>Programmable Logic Controllers</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>BRAV762</td>
<td>Field and Service Robotics</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>BRAV763</td>
<td>Essence of Indian Traditional Knowledge/ Indian Constitution</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>BVAP761</td>
<td>Major Project</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BRAT761</td>
<td>Embedded product designer Technical lead (ELE/Q1403)</td>
<td>Any one Training (other than 5th sem) 400 hrs/ 8 weeks</td>
<td>200</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT762</td>
<td>Programmable Logic Controllers-programmer (IAS/Q5609)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAT763</td>
<td>Product Design Manager L7 (ASC/Q8103)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>670</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GV: General Vocational; VP: Vocational Practical; OJT: On Job Training; SSC: Sector Skill Council
National Skill Qualifications Framework (NSQF)
(SEMESTER I)
(5.GV.01) Basics of Industrial Automation

Unit I:

Unit II:
Manufacturing Automation: Classification and type of automatic transfer machines; Automation in part handling and feeding, Analysis of automated flow lines, design of single model, multi-model and mixed model production lines. Programmable Manufacturing Automation CNC machine tools, Machining centers, Programmable robots, Robot time estimation in manufacturing operations.

Unit III:
Type Automation: Automated Flow lines, Methods of Workpart Transport, Transfer Mechanism, Buffer Storage, Control Functions, and Automation for Machining Operations, Design and Fabrication Considerations.

Unit IV:

Reference Books:
2. Computer Based Industrial Control – Krishna Kant, EEE-PHI
Unit I: Strength of Materials & Power Transmission
Stress, strain, elastic constraints, stress in circular shaft subjected to pure torsion only, Riveted and bolted joints.

Unit II: Shear Force & Bending Moment
Elementary idea of Shear force and bending moment for concentrated, uniformly distributed loads simply supported beam cantilever and overhanging beam, Simple Shear force and bending moment diagrams, Relationship between shear force and bending moment

Unit III: Power Transmission: Pulleys, Gears & Shaft
Classification of Pulleys, Types of Belts, Simple calculation of pulley diameter, Classification of Gears, Simple calculation of number of teeth and speed, Power transmission by solid and hollow shaft

Unit IV: Hydraulics & Hydraulic Machines
Properties of fluids, pressure of fluid and its measurement. Flow of fluids, velocity and discharge, Bernoulli’s theorem and its application in venturimeter, flow through pipe, head loss due to friction

Reference Books:
UNIT-I
Introduction: Welding as compared with other fabrication processes, Importance and application of welding, classification of welding processes, Health & safety measures in welding

UNIT II
Welding Power Sources: Physics of welding Arc, Basic characteristics of power sources for various arc welding processes, Transformer, rectifier and generators.

UNIT III
Physics of Welding Arc: Welding arc, arc initiation, voltage distribution along the arc, arc characteristics, arc efficiency, heat generation at cathode and anode, Effect of shielding gas on arc, isotherms of arcs and arc blow. Metal Transfer: Mechanism and types of metal transfer in various arc welding processes

UNIT IV

Books and References:
(Semester I)
(5.GV.04) Basic Electrical and Electronics Systems

Unit-I:
Circuit Analysis
Concept of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, source transformation, Kirchoff’s Law: loop and nodal methods of analysis, star delta transformation.

Unit-II:

Display Devices
Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic-Light Emitting Diode (O-LED), 7- segment display.

Unit-III:
Digital Design and Binary Numbers: Minterm and Maxterm Realization of Boolean Functions, Gate-level minimization: The map method up to four variable, don’t care conditions, SOP and POS simplification, Digital logic gates, NAND and NOR implementation.

Unit-IV:

Synchronous Sequential Logic: Sequential Circuits, Storage Elements: Latches, Flip Flops, Analysis of Clocked Sequential circuits.

Text Book
2. Digital Logic And Computer Design By M. Morris Mano
4. C.L. Wadhwa, Basic Electrical Engineering, Pearson Education
5. J.B. Gupta, Basic Electrical Engineering, Kataria& Sons
(Semester I)
(5.VP.01) Basic Electrical and Electronics Lab
List of Experiments

1. Verification of Kirchhoff’s laws
2. Verification of Superposition Theorem.
3. Verification of Thevenin’s Theorem.
4. Verification of Norton’s Theorem.
5. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.
6. To design half wave rectifier circuits using diode.
7. To generate random numbers using 7-Segment display.
8. Study of Cathode Ray Oscilloscope and measurement of different parameters using CRO.
9. To design and perform Adder and Subtractor circuit using Op-Amp.
10. To understand the concept of Wireless Home Automation System based on IoT for controlling lights and fans.
11. To calculate and draw different electrical parameter using MATLAB/Simulink for a circuit.
12. Energy audit of labs and rooms of different block.
13. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.
14. Implementation of the given Boolean function using logic gates in both SOP and POS forms.
15. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.
17. Implementation of 4x1 multiplexer using logic gates.

(Semester I)
(5.VP.02) Pneumatics Lab

1. Operating of single acting cylinder
2. Operating of double acting cylinder
3. Impulse piolet operation of single acting cylinder
4. Maintained piolet operation of single acting cylinder
5. Operation of single acting cylinder using dual pressure (AND) valve
6. Operating of single acting cylinder – controlled from different positions using shuttle (OR) valve
7. Controlling the speed of double acting cylinder using Metering IN flow control valve
8. Controlling the speed of double acting cylinder using Metering OUT flow control valve
10. Single cycle operation of double acting cylinder using limit switch and memory valve
11. Single and Multiple cycle operation of a double acting cylinder using limit switch and memory valve
LIST OF PRACTICALS

1. Locating a Book in Library
2. To look up words in a Dictionary: meaning and pronunciation of words as given in the standard dictionary using symbols of phonetics
3. To seek information from an Encyclopedia
4. Listening pre-recorded English language learning programme
5. Paper reading before an audience (reading unseen passages)
6. Study of spelling Rules
7. Study of essentials of a good speech to respond and comprehend visual, oral themes, situations or stimulus and practice before select gathering
8. Exercises on use of different abbreviations
9. Greetings for different occasions
10. Introducing oneself, others and leave taking
11. Exercises on writing sentences on a topic
(SEMESTER II)
(5.GV.05) Sensor and Transducer

Unit I
Block Schematics of Measuring Systems, Performance Characteristics, Static Characteristics, Accuracy, Precision, Resolution, Types of Errors, Gaussian Error, Root Sum Squares formula, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag

Unit II

Unit III

Unit IV

Reference Books:
(Semester II)
(5.GV.06) Manufacturing Technology- I

Unit I:
(A) General Introduction: (a) Scope of subject "Workshop Technology" in engineering (b) different shop activities and broad division of the shops on the basis of nature of work done such as (i) Wooden Fabrication-carpentry (ii) Metal Fabrication (shaping and Forming, Smithy, sheet metal and Joining-welding, Riveting, Fitting and Plumbing).
(B) Carpentry: (a) Fundamental of wood working operations (b) Common Carpentry Tools- Their classification, size, specification (name of the parts and use only): (i) Marking and measuring tools (ii) Holding and supporting tools: (iii) Cutting and Sawing Tools: (iv) Drilling and Boring Tools. (v) Striking Tools-Mallet and Claw hammer (vi) Turning Tools & Equipment (vii) Miscellaneous Tools

Unit II:
(A) Joining of Timber Components for Fabrications Works: Assembly of joints (Preparation steps and tools used only) Mortise, Tenon, Rivet, Groove, Tongue, Dowel, operations in assembly-simple lap and butt, Mortise, Tenon, Dovetail, Miter & bridle joints.

Metal Fabrication
(B) Metal Shaping-Smithy: (i) Operations involved (concept only) (ii) Tool and equipment used (Names, size, specification for identification only) (iii) Heating and fuel handling equipment (iv) Holding and supporting tools (v) Striking Tools (vi) Cutting tools (vii) Punching & Drifting Tools (viii) Bending Tools and figures (ix) Forming & Finishing Tools (x) Defects Occurring & its remedy

Unit III
Sheet metal Working-Tools and operation: (1) Operations involved (Names and concept only) (2) Sheet metal joints (3) Tools and equipment used (Name, size, specifications for identification only) (4) Marking tools (5) Cutting and shearing Tools (6) Straightening tool (7) Striking Tools (8) Holding Tools (9) Supporting Tools (10) Bending tools (11) Punching-Piercing and Drafting tools (12) Burring Tools (13) Defects Occurring & its remedy

Unit IV
(A) Metal Joining During Fabrication-
(a) Permanent Joining: (i) Welding methods (ii) Electric welding
(b) Soldering & Brazing: (i) Its concept, comparison with welding as joining method and classification (ii) Soldering operation (iii) Materials Used (iv) Defects Occurring & its remedy
(B) Riveting- (i) Its comparison with welding as joining method. (ii) Rivets and Materials. (iii) Operation involved (iv) Tools and equipment used (Names, Size, specification and uses), Elementary knowledge about working of pneumatic, hydraulic and electric riveter. Temporary Joining (Fasteners & their uses), General Idea about temporary fasteners & their uses
(C) Familiarity with the Use of Various Tools Used in Mechanical Engineering Workshop (a)Marking & Measuring Tools (b) Holding Tools (c) Cutting Tools (d) Files (e) Thread Cutting Tools (h) Miscellaneous Tools. They should be shown physically to each student for familiarity.

Reference Books:
(Semester II)
(5.GV.07) Pneumatic & Hydraulic Systems

Unit I

Unit II

Unit III

Unit IV

Text Books:

(Semester II)
(5.GV.08) Basics of Industrial Robotics

UNIT - I

UNIT - II

UNIT - III
Kinematics-Manipulators Kinematics, Rotation Matrix, Homogenous Transformation Matrix, Direct and Inverse Kinematics for industrial robots. Differential Kinematics for planar serial robots

UNIT - IV
Control- Interaction control, Rigid Body mechanics, Control architecture- position, path velocity, and force control systems, computed torque control, adaptive control, and Servo system for robot control.
Programming of Robots and Vision System-Lead through programming methods- Teach pendent- overview of various textual programming languages like VAL etc. Machine (robot) vision:

TEXT BOOKS:
1. Industrial Robotics / Groover M P /Mc Graw Hill
2. Introduction to Robotics / John J. Craig/ Pearson
REFERENCE BOOKS:
2. Robotics / Ghosal / Oxford
On the basis of learning in the vocational diploma, a project to be taken up by the student strengthening his/her vocational skills

(Semester II)
(5.VP.04) Mini Project

On the basis of learning in the vocational diploma, a project to be taken up by the student strengthening his/her vocational skills

(Semester II)
(5.VP.05) Applied Robotic Control Lab

1. How to move a robotics ARM and prepare a program on simulation software
2. Write a program and simulate for welding task
3. Write a program and simulate the task of pick & place
4. Simulation of a 3-finger gripper in Kuka sim pro with the help of a “move tower” project
5. Palletizing of boxes using Kuka sim pro industrial robot and a vacuum gripper
6. Sensing strategy and robot path creation for interrupted welding lines at car underbody
7. How to move a robotics arm and prepare a program on robotic ARM KR-10.
8. Write a program for task of pick & place on robotic ARM KR-10.
9. Write a program for welding task on robotic ARM KR-10.

(Semester II)
(5.VP.06) Sensor and Transducer Lab

1. Voltage and Current Detection Circuitry
2. Temperature and Pressure Detection Circuitry
3. Water flow and Level detection Circuitry
4. Position Indication (LVDT,Pot)
5. Proximity sensors (inductive)
6. Distance (Ultrasonic) sensor
7. Light sensor
8. Humidity sensor
9. Rainfall and Soil moisture Sensor
10. Motion sensor
11. Measurement of Power and Energy
12. Accelerometer sensor
(SEMESTER III)

(6.GV.01) Manufacturing Technology- II

Unit I
GENERAL PROCESS: Classification and elementary idea of metal forming processes on the basis of the properties of deformability (Plasticity), fusibility and divisibility viz., Rolling, Forging, Drawing, Extruding, Spinning, Pressing, Punching, Blanking, Welding, Soldering, Brazing, Metal cutting processes-turning, Drilling, Boring, Shaping, Grinding. Elementary idea of machines used for the above processes.

UNIT II
TESTING OF WELDS & RELEVANT WELDING CODES: (a) Destructive methods (b) Non-destructive methods-visual, X-ray, Y-ray, Magnetic particles, fluorescent, penetrant and ultrasonic testing.

UNIT III
FOUNDRY PRACTICE PATTERN & MOULDING: The pattern materials used, Types of pattern allowances and pattern layout, Colour scheme patterns defects, Types of cores and their utility. Moulding and Pouring: Classification of mould materials according to characteristics, Types of sands and their importance test, parting powders and liquids, Sand mixing preparation, Moulding defects.

UNIT IV
MELTING AND POURING: Brief idea of refractory material and fluxes, Fuels and metallic materials used in foundry. Melting furnaces used in foundry such as pit furnace, Tilting and cupola furnaces, their construction and operation, metals and alloys. Additions to molten metal, Closing and pouring of the moulds.

Reference Books:
(Semester III)
(6.GV.02) Electrical Machines for Automation

Unit I

Unit II
SERVOMOTORS: Types – Constructional features - Principle of operation – Feedback system - Sizing of servomotors – Applications.

Unit III

Unit IV
GEARED MOTORS: Design Principle – Types of Gearboxes – Selection of a Gear Unit – Operation Factor – Equivalent Power –Factors that affect operation factor – Geared Motor Applications

TEXT BOOKS:

REFERENCES:
UNIT – I

UNIT – II

UNIT – III
Precision Mechanical Systems : Modern CNC Machines – Design aspects in machine structures, guideways, feed drives, spindle and spindle bearings, measuring systems, control software and operator interface, gauging and tool monitoring.

UNIT – IV
Electromechanical Drives: Relays and Solenoids - Stepper Motors - DC brushed motors – DC brushless motors - DC servo motors - 4-quadrant servo drives , PWM’s - Pulse Width Modulation – Variable Frequency Drives, Vector Drives - Drive System load calculation.
Unit I
Classification of Metal Removal Process and Machines Mechanics of Metal Cutting: Geometry of single point cutting tool and tool angles, tool nomenclature in ASA, ORS, NRS and interrelationship, introduction of mechanism of chip formation and types of chips, chip breakers, orthogonal and oblique cutting, cutting forces and power required, theories of metal cutting, thermal aspects of machining and measurement of chip tool interface temperature, friction in metalcutting.

Unit II
Machinability: Concept and evaluation of machinability, tool life, mechanisms of tool failure, tool life and cutting parameters, machinability index, factors affecting machinability, Cutting fluids, types, properties, selection and application methods, General Purpose Machine Tools: tooling, attachments and operations performed, selection of cutting parameters, Simple calculation of time for machining.

Unit III

Unit IV
Thread and Gear Manufacturing: Casting, thread chasing, thread cutting on lathe, thread rolling, die threading and tapping, thread milling, thread grinding, Gear Manufacturing Processes: Hot rolling, stamping, powder metallurgy, extruding etc. gear generating processes, gear hobbling, gear shaping, gear finishing processes, shaving, grinding, lapping, shot blasting, phosphate coating, gear testing.

Reference Books:
UNIT – I

UNIT – II

UNIT – III
Distribution systems requirement –method and layouts -Design procedures- Hardy Cross and equivalent pipe methods pipe – joints, valves such as sluice valves, air valves, scour valves and check valves water meters – laying and testing of pipe lines – pump house – Conservancy and water carriage systems – sewage and storm water estimation – time of concentration – storm water overflows combined flow

UNIT - IV

TEXT BOOKS:

REFERENCES:
1. Water and Waste Water Technology by Steel, Wiley
LIST OF EXPERIMENTS

1. Design and testing of fluid power circuits to control
 (i) Velocity (ii) direction and (iii) force of single and double acting actuators
2. Design of circuits with logic sequence using Electro pneumatic trainer kits.
3. Simulation of basic Hydraulic, Pneumatic and Electric circuits using software
4. Circuits with multiple cylinder sequences in Electro pneumatic using PLC
5. Speed Control of AC & DC drives
6. Servo controller interfacing for DC motor
7. PID controller interfacing
8. Stepper motor interfacing with 8051 Micro controller
 (i) Full step resolution (ii) half step resolution
9. Modeling and analysis of basic electrical, hydraulic and pneumatic systems using LAB VIEW
10. Computerized data logging system with control for process variables like pressure flow and temperature.

(Semester III)
(6.VP.02) Manufacturing Technology Lab

1. Turning job: One job consisting of minimum three turning operations like, taper turning, Chamfering, knurling, threading etc.
2. Foundry job: Sand Mold Casting.
3. Welding job: An arc welding job consisting of minimum two types of joints.
4. Demonstration of CNC job: Developing program and performing job on CNC lathe
Unit I

Tool holders: Tool holders for turning and milling carbide inserts-types, ISO-designation and applications, Tool holding and tool mounting systems for conventional milling and drilling machine tools.

Unit II

Locating and clamping devices: Concept, meaning and definitions of location and clamping, Use of locating and clamping principles in day-to-day supervision on shop floor, Degree of freedom-concept and importance, 3-2-1 principle of location, Locators-Types, Sketches with nomenclature, Working, Applications, Fool proofing and ejecting

Unit III

Clamping devices: Types, Sketches with nomenclature, Working, Applications

Unit IV

Jigs and fixtures: Concept, meaning, differences and benefits of jigs and fixtures, Types, sketches with nomenclature, working and applications of jigs, Types, sketches with nomenclature, working and applications of fixtures.

Reference Books:

1. Tool Engineering BY Albert A Dowd
Unit I
INTRODUCTION:
History - Advantages and disadvantages of CNC, block diagram of CNC - Principle of operation- Features available in CNC systems
TYPES OF CNC MACHINES : Types and constructional features of machine tools- Turning centres, machining centres, grinding machines

Unit II
Design considerations – Axis representations, Various operating modes of a CNC machine. Control Units: Functions of CNC, system hardware, Contouring control - interpolation, Parameters and diagnosis features. Interfacing with keyboard, monitor, field inputs, outputs, Role of PLC in CNC machines.- hardware and I/O configuration.

Unit III

Unit IV
NC PART PROGRAMMING PROCESS: Axis notation, EIA and ISO codes, Explanation of basic codes. Tooling concepts, machining methods, part geometry and writing of tool motion statements, Development of simple manual part programs for turning operations
UNIT I

UNIT II
Introduction –smart objects, IoT market, environment, opportunities, IoT for buildings, Cloud computing, device connectivity, Analytics, Real time analytics, Trend analytics, Predictive analytics, IBM Watson cognitive computing

UNIT III

UNIT IV
Drones and IoT: IoT drone projects, How to use Blue mix to control a drone, AR-Drone, Zombie drone video.

Reference text book :
1. The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities
(Semester IV)
(6.GV.08) Microprocessors and Microcontrollers

UNIT I
Introduction of Microprocessor of 8085:
Introduction of Microprocessors, Microcomputer System, Difference between Microcontrollers & Microprocessors

UNIT II
Architecture of Microprocessor of 8085 & 8051 Microcontroller:
8085 Microprocessor Architecture, Address, Data And Control Buses, Pin Functions, De-multiplexing of Buses, Generation Of Control Signals, Memory Interfacing, Architecture of 8051, Pin Function of 8051 microcontroller

UNIT III
Introduction To 8-bit AVR Microcontroller:
Overview of AVR family, AVR Microcontroller architecture, Register, AVR status register, ROM space and other hardware modules, ATmega32 pin configuration & function of each pin.

UNIT IV
AVR Assembly Language Programming:
Addressing modes of AVR, Data transfer Arithmetic, Logic and Compare, Rotate and Shift, Branch and Call instructions. AVR data types and assembler directives, AVR assembly language programs, AVR I/O Port Programming, Time delay loop.

Text Books :
1. Ramesh Gaonkar, “Microprocessor Architecture, Programming, and Applications with the 8085”, Penram International Publication (India) Pvt. Ltd.

Reference Books:
(Semester IV)
(6.AV.02) Universal Human Values & Ethics

UNIT I
Course Introduction - Need, Basic Guidelines, Content and Process for Value Education Understanding the need, basic guidelines, content and process for Value Education, Self-Exploration – what is it? - its content and process; ‘Natural Acceptance’ and Experiential Validation- as the mechanism for self-exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority.
Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

UNIT II
Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient ‘I’ and the material ‘Body’, Understanding the needs of Self (‘I’) and ‘Body’ - Sukh and Suvidha, Understanding the Body as an instrument of ‘I’ (I being the doer, seer and enjoyer), Understanding the characteristics and activities of ‘I’ and harmony in ‘I’, Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.

UNIT III
Understanding Harmony in the Family and Society - Harmony in Human-Human Relationship Understanding harmony in the Family- the basic unit of human interaction.
Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship, Understanding the meaning of Vishwas; Difference between intention and competence, Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, Understanding the harmony in the society (society being an extension of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals, Visualizing a universal harmonious order in society Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha) - from family to world family!

UNIT IV
Understanding Harmony in the Nature and Existence – Whole existence as Co-existence
Understanding the harmony in the Nature, Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature, Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

UNIT V
Implications of the above Holistic Understanding of Harmony on Professional Ethics Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) At the level of society: as mutually enriching institutions and organizations.

Text Books:

References:

Semester IV

(6.VP.03) (IoT Lab)

1. Water Level Monitor
2. Smart Meeting Rooms
3. Smart Garden System
4. Smart Parking System
5. Smart Garage Door
6. Weather Monitoring System
7. Air Pollution Monitoring System
8. Health Monitoring System
9. Smart Water Irrigation System

Semester IV

(6.VP.04) (Microprocessors and Microcontrollers lab)

2. 8051 Microcontroller based Frequency Counter.
3. Android Controlled Robot using 8051 Microcontroller.
4. RFID Interfacing with 8051 Microcontroller.
7. Digital Clock using 8051 Microcontroller.
8. Interfacing ADC0808 with 8051 Microcontroller.
(SEMESTER V)
(7.GV.01) EMBEDDED PROCESSORS

Unit -I

INTRODUCTION: ARM Design Philosophy, Registers, Program Status Register, Instruction Pipeline, Interrupts and Vector Table, Architecture Revision, ARM Processor Families, features, advantages & suitability in embedded application.

Unit -II

Unit -III

Unit -IV

APPLICATIONS: Block interfacing with RGB LED, Seven Segment, TFT Display, and Motor control using PWM. Concept of USB, CAN, and Ethernet based communication using microcontrollers.

TEXT BOOK:

REFERENCES:
(Semester V)

(7.GV.02) ROBOTICS AND MATERIAL HANDLING SYSTEMS

Unit I
INTRODUCTION: Types of industrial robots, Load handling capacity, general considerations in Robotic material handling. ROBOTS FOR INSPECTION: Robotic vision systems, image representation, object recognition and categorization.

Unit II
OTHER APPLICATIONS: Application of Robots in continuous arc welding, Spot welding, Spray painting, assembly operation, cleaning, robot for underwater applications. END EFFECTORS: Gripper force analysis and gripper design for typical applications, design of multiple degrees of freedom, active and passive grippers.

Unit III
SELECTION OF ROBOT: Factors influencing the choice of a robot, robot performance testing, economics of robotisation, Impact of robot on industry and society.

Unit IV
MATERIAL HANDLING: concepts of material handling, principles and considerations in material handling systems design, conventional material handling systems - industrial trucks, monorails, rail guided vehicles, conveyor systems, cranes and hoists, advanced material handling systems, automated storage and retrieval systems(ASRS), bar code technology, radio frequency identification technology.

TEXT BOOKS:

REFERENCES:
UNIT-I:
Introduction
Introduction to electric and hybrid electric vehicles, History of hybrid and electric vehicles, Social and environmental importance of electric and hybrid electric vehicles

UNIT-II:
Introduction to Automated, Connected, and Intelligent Vehicles, Introduction to the Concept of Automotive Electronics, Automotive Electronics Overview, History & Evolution, Infotainment, Body, Chassis, and Power train Electronics, Advanced Driver Assistance Electronic Systems

UNIT-III:
Connected and Autonomous Vehicle Technology, Basic Control System Theory applied to Automobiles Overview of the Operation of ECUs, Basic Cyber-Physical System Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and Autonomy, Role of Wireless Data Networks and Autonomy

UNIT-IV:

Reference Books:
1. Electric & Hybrid Vehicles, A.K. Babu, Khanna Publishing House
3. Electric and Hybrid Vehicles: Design Fundamentals: Iqbal Husain
(Semester V)

(7.GV.04) IMPLEMENTATION OF QUALITY MANAGEMENT SYSTEM

UNIT-I:
INTRODUCTION – Need for Quality – Definitions of Quality – Dimensions of Product and Service Quality – Basic Concept of TQM – Contributions of Deming, Juran and Crosby – Barriers to TQM.

UNIT-II:

UNIT-III:

UNIT-IV:

REFERENCES:
3. Hubert K.Rampersad, ―Total Quality Management‖, Springer International Publishing
UNIT I
Constitution’ meaning of the term,, Indian Constitution: Sources and constitutional history, Features: Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy

UNIT II
Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha

UNIT III
Governor: Role and Position, CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

UNIT IV
District’s Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials and their roles, CEO ZilaPachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

References
1. ‘Indian Polity’ by Laxmikanth
2. ‘Indian Administration’ by SubhashKashyap
3. ‘Indian Constitution’ by D.D. Basu
4. ‘Indian Administration’ by Avasti and Avasti
(Semester V)
(7.VP.01) Electro-pneumatics Lab

1. Operation of a single acting cylinder using single solenoid valve (direct actuation of solenoid)
2. Operation of a double acting cylinder using single solenoid valve (direct actuation of solenoid)
3. Operation of a single acting cylinder using single solenoid valve (use relay for actuation of solenoid)
4. Operation of a double acting cylinder using single solenoid valve (use relay for actuation of solenoid)
5. Apply AND logic using two manual controls for forward stroke of a double acting cylinder (direct actuation of solenoid)
6. Apply OR logic using two manual controls for forward stroke of a double acting cylinder (direct actuation of solenoid)
7. Apply AND logic using two manual controls with relay for forward stroke of a double acting cylinder (use relay for solenoid actuation)
8. Apply OR logic using two manual controls with relay for forward stroke of a double acting cylinder (use relay for solenoid actuation)
9. Operation of a single acting cylinder using single solenoid valve (use separate manual controls for forward stroke and return stroke)
10. Operation of a double acting cylinder using single solenoid valve (use separate manual controls for forward stroke and return stroke)
LIST OF PRACTICALS (more experiments can be added according to facility available)

1. Study and compare different charging stations.
2. Analysis of different control system on Simulator.
3. Analysis of Battery Cooling System on Simulator.
4. Analysis of Battery Monitoring System on Simulator.
5. Analysis of Emission control system on Simulator.
6. Analysis of Control Units on Simulator.
UNIT I
PLC BASICS
Programmable Logic Controllers (PLCs): Introduction; definition & history of the PLC; Principles of Operation; Various Parts of a PLC: CPU & programmer/ monitors; PLC input & output modules; Solid state memory; the processor; I/O modules; power supplies. PLC advantage & disadvantage; PLC versus Computers, PLC Application. Programming equipment; proper construction of PLC ladder diagrams; process scanning consideration; PLC operational faults.

UNIT II
PLC Hardware Components
The I/O section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O specifications, The CPU, Memory design, Memory Types, Programming Devices, Selection of wire types and size.

UNIT III
Various INPUT /OUTPUT Devices and its interfacing with PLC.
Different types of Input devices : Switches: Push button Switches, Toggle Switches, Proximity switches, Photo switches, Temperature Switch, Pressure Switch, and Level Switch. Flow Switches, manually operated switches, Motor starters, Transducers and sensors, Transmitters etc. Their working, specification and interfacing with PLC. Different types of Output devices : Electromagnetic Control Relays, Latching relays, Contactors, Motors, Pumps, Solenoid Valves etc. Their working, specification and interfacing with PLC.

UNIT IV
Basics of PLC Programming
Processor Memory Organization, Program Scan, PLC Programming languages, Relay type instructions, Instruction addressing, Branch Instructions, Internal Relay Instructions, Programming Examine if Closed and examine If Open instructions, Entering the ladder diagram, Modes of operation. Creating Ladder Diagrams from Process Control Descriptions. Ladder diagram & sequence listing; large process ladder diagram construction, flow charting as programming method, Industrial Examples.
UNIT I

UNIT II
PLANNING AND NAVIGATION: Introduction-Path planning overview- Road map path planning- Cell decomposition path planning Potential field path planning. Obstacle avoidance - Case studies: tiered robot architectures.

UNIT III
FIELD ROBOTS : Ariel robots- Collision avoidance-Robots for agriculture, mining, exploration, underwater, civilian and military applications, nuclear applications, Space applications.

UNIT IV
UNIT I

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge through indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge through formal knowledge.

UNIT II

Protection of traditional knowledge: the need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT III

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

UNIT IV

Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

References:

2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, PratibhaPrakashan 2012.
3. VN Jha (Eng. Trans.), Tarkasangraha of Annam Bhatta, International Chinmay Foundation, Velliarnad, Arnakulam
4. Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkata

(Semester VI)

(7.VP.03) Major Project

On the basis of learning in the B.Voc. Programme, i.e. Level 5 to Level 7, a project to be taken up by the student strengthening his/ her vocational skills.