B. Tech.

(SEM. IV) EXAMINATION, 2006-07

COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time : 2 Hours] [Total Marks : 50

Note : Attempt all the questions.

1 Attempt any four of the following : \[4 \times 3 = 12 \]

(a) If \(u = 3 \ 9^7 - 6 \ 9 \) find the percentage error in \(u \) at \(9 = 1 \), if the error in \(9 \) is 0.05.

(b) Compute the real root of \(x^3 - 5x + 3 = 0 \) in the interval \([1,2]\) by the Regula falsi method. Perform three iterations only.

(c) By Newton Raphson method find the positive root of \(f(u) = x - 2 \sin x \).

Choose suitable initial guess and perform three iterations.

(d) Find the root of the equation

\[f(u) = x^3 - 3x - 5 = 0 \] which lies between 2 and 3 by the Muller’s method. Perform two iterations only.

V-1034] 1 [Contd...
(e) Apply the quotient – difference method to obtain the approximate roots of the equation.
\[X^3 - 7x^2 + 10x - 2 = 0. \]

(f) Define rate of convergence. Obtain rate of convergence of Newton Raphson method.

2 Attempt any four of the following: 4x3=12

(a) From the following table, find the number of students who obtained less than 45 marks by method of interpolation:

<table>
<thead>
<tr>
<th>Marks</th>
<th>0-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Students</td>
<td>0</td>
<td>31</td>
<td>42</td>
<td>51</td>
<td>35</td>
<td>31</td>
<td>5</td>
</tr>
</tbody>
</table>

(b) The ordinates of the normal curve are given by the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>.0</th>
<th>.2</th>
<th>.4</th>
<th>.6</th>
<th>.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>.3989</td>
<td>.3910</td>
<td>.3683</td>
<td>.3332</td>
<td>.2897</td>
</tr>
</tbody>
</table>

Calculate: (i) \(y(0.25) \) (ii) \(y(0.62) \).

Use Newton’s method of interpolation.

(c) Use stirling formula to find \(y(28) \) given:

<table>
<thead>
<tr>
<th>(x)</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>49225</td>
<td>48316</td>
<td>47236</td>
<td>45926</td>
<td>44306</td>
</tr>
</tbody>
</table>

(d) Applying Lagrange’s formula, find the interpolating polynomial \(f(x) \) for the following set of observations:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>4</td>
<td>3</td>
<td>24</td>
<td>39</td>
</tr>
</tbody>
</table>

Also find \(f(2) \).
(e) By means of Newton’s divided difference formula, find the values of \(f(2) \), \(f(8) \) and \(f(15) \) from the following table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(u))</td>
<td>48</td>
<td>100</td>
<td>294</td>
<td>900</td>
<td>1210</td>
<td>2028</td>
</tr>
</tbody>
</table>

(f) Differentiate between interpolation and curve fitting.

3 Attempt any two parts: \(7 \times 2 = 14 \)

(a) Fit a natural cubic spline to the following data:

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>11</td>
<td>49</td>
<td>121</td>
</tr>
</tbody>
</table>

Hence compute

(i) \(y(2.5) \) and

(ii) \(y'(2) \)

(b) Find the first and second derivative at 1.1 for the data

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.00</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(u))</td>
<td>0</td>
<td>.1280</td>
<td>.5440</td>
<td>1.2960</td>
<td>2.432</td>
<td>4.00</td>
</tr>
</tbody>
</table>

(c) Evaluate the integral

\[
\int_{0}^{1} \frac{x^2}{1 + x^3} \, dx
\]

Simpson’s rule taking four equal intervals, and hence find the value of \(\log_e 2 \).
Attempt any two parts: 6x2=12

(a) For a bi variate distribution n = 18,

\[\sum x^2 = 60, \sum y^2 = 96, \sum x = 12, \sum y = 18, \sum xy = 48 \]

Find the equations of lines of regressions.

(b) Fit the curve \(y = ax^b \) to the following data, using method of least squares.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2.98</td>
<td>4.26</td>
<td>5.21</td>
<td>6.1</td>
<td>6.8</td>
<td>7.5</td>
</tr>
</tbody>
</table>

(c) Write short notes on: 6x2=12

(i) Quality Control Methods

(ii) Multiple Regression Analysis.