B. Tech.
(Sem. VI) Examination, 2007
Compiler Construction

Time : 3 Hours] [Total Marks : 100

Note : Attempt all questions.

1. Attempt any four parts of the following : $5 \times 4 = 20$

 (a) Discuss how YACC can be used to generate a parser. Also, explain the format of its input specification file.

 (b) Prove that regular sets are closed under intersection. Present a method for constructing a DFA with an intersection of two regular sets.

 (c) Construct a finite automata that will accept those strings of a binary number that are divisible by three.

 (d) Find the DFA recognizing the language described by the regular expression.

 $a|abb|a^*b^+$

 (e) Find the reduced grammar that is equivalent to the CFG given below:

 $S \rightarrow aC | SB$
 $A \rightarrow bSCa$
 $B \rightarrow aSB | bBC$
 $C \rightarrow aBC | ad$

[Contd...]

(f) What is the language accepted by the finite automata whose transition diagram is given below: (Fig. 1).

![Finite Automaton Diagram]

Fig. 1

2 Attempt any two parts of the following: 10x2=20

(a) Construct the LALR parsing table for the following grammar:

\[S \rightarrow AA \]
\[A \rightarrow aA | b \]

(b) Construct a predictive parsing table for the following grammar where \(S \) is a start symbol and \# is the end marker.

\[S \rightarrow S\# \]
\[S \rightarrow aABC \]
\[A \rightarrow a | bbD \]
\[B \rightarrow a | \epsilon \]
\[C \rightarrow b | \epsilon \]
\[D \rightarrow c | \epsilon \]
(c) Consider the grammar and test whether the grammar is LL(1) or not.

\[S \rightarrow |AB| \in \]
\[A \rightarrow |AC|OC \]
\[B \rightarrow OS \]
\[C \rightarrow 1 \]

3 Attempt any two parts of the following: 10x2=20
(a) Generate three address code for the following code:
switch \(a + b \)
{
 case 1 : \(x = x + 1 \)
 case 2 : \(y = y + 2 \)
 case 3 : \(z = z + 3 \)
 default : \(c = c - 1 \)
}

(b) Construct an SLR(1) parsing table for the following grammar:
\[S \rightarrow A) \]
\[A \rightarrow A, P \) (P, P \]
\[P \rightarrow \{ \text{num, num} \} \]

(c) Transform the following NFA into an optimal/minimal state DFA:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>(\in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>A, C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>A</td>
<td>-</td>
</tr>
</tbody>
</table>

V-1038] 3 [Contd...
4 Attempt any two parts of the following: \(10 \times 2 = 20\)
 (a) Write the syntax directed translation to go along with the LR parser for the following:
 \[S \rightarrow AE \]
 \[A \rightarrow DS \text{ while} \]
 \[D \rightarrow \text{do} \]
 (b) For the grammar having productions:
 \[A \rightarrow (A) \mid \varepsilon \]
 Compute FIRST and FOLLOW set of \(A\).
 (c) A relation \(R\) on the set of integers defined as:
 \[R = \{(a, b) \mid a - b \text{ is even integer}\} \]
 Show that \(R\) is equivalence.

5 Attempt any two parts of the following: \(10 \times 2 = 20\)
 (a) Give three-address code for the following code fragment:
 \begin{align*}
 \text{if } & a < b \text{ then} \\
 \text{while } & c > d \text{ do} \\
 \text{while } & e <= f \\
 \text{else} & \\
 \text{do} & \\
 p &= p + q \\
 \text{while } & e <= f \\
 \end{align*}
 (b) Construct an LALR(1) parsing table for the following grammar:
 \[D \rightarrow L : T \]
 \[L \rightarrow L, id \mid id \]
 \[T \rightarrow \text{integer} \]
 (c) Write a short note on code optimization.